Dell
- 555
- 0
\int(x-5)/(x2-2x+2)dx
(x-5)/(x2-2x+2)=(x-1-4)/((x-1)2+1)
x-1=t therefore x=t+1
dx=x'dt=(t+1)'dt=dt
\int(x-5)/(x2-2x+2)dx=\int(t-4)/(t2+1)dt
=\intt/(t2+1)dt-4\int1/(t2+1)dt
=0.5ln|t2+1|-4arctg(t)+c
(x-5)/(x2-2x+2)=(x-1-4)/((x-1)2+1)
x-1=t therefore x=t+1
dx=x'dt=(t+1)'dt=dt
\int(x-5)/(x2-2x+2)dx=\int(t-4)/(t2+1)dt
=\intt/(t2+1)dt-4\int1/(t2+1)dt
=0.5ln|t2+1|-4arctg(t)+c