These consideration resolve an apparent paradox concerning the Hawking effect. The proper time for a freely-falling observer to reach the event horizon is finite, yet the free-fall time as measured at infinity is infinite. Ignoring back-reaction, the black hole will emit an infinite amount of radiation during the time that the falling observer is seen, from a distance to reach the event horizon. Hence it would appear that, in the falling frame, the observer should encounter an infinite amount of radiation in a finite time, and so be destroyed. On the other hand, the event horizon is a global construct, and has no local significance, so it is absurd too conclude that it acts as physical barrier to the falling observer.
The paradox is resolved when a careful distinction is made between particle number and energy density. When the observer approaches the horizon, the notion of a well-defined particle number loses its meaning at the wavelengths of interest in the Hawking radiation; the observer is 'inside' the particles. We need not, therefore, worry about the observer encountering an infinite number of particles. On the other hand, energy does have a local significance. In this case, however, although the Hawking flux does diverge as the horizon is approached, so does the static vacuum polarization, and the latter is negative. The falling observer cannot distinguish operationally between the energy flux due to oncoming Hawking radiation and that due to the fact that he is sweeping through the cloud of vacuum polarization. The net result is to cancel the divergence on the event horizon, and yield a finite result, ...