bobred
- 170
- 0
Homework Statement
The temperature variation at the surface is described by a Fourier
series
\theta(t)=\sum^\infty_{n=-\infty}\theta_n e^{2\pi i n t /T}
find an expression for the complex Fourier
series of the temperature at depth d below the surface
Homework Equations
Solution of the diffusion equation
\theta(x,t)=\cos\left(\phi+\omega t-\sqrt{\dfrac{\omega}{2D}}x\right)\exp\left(-\sqrt{\dfrac{\omega}{2D}}x\right)
The Attempt at a Solution
A the surface x=0 so
\theta(0,t)=\cos\left(\omega t + \phi\right)
To find the coefficients \theta_n I'm guessing I use the Fourier formula
\theta_n=\frac{1}{T}\int_0^T dt \, \theta(0,t) \exp\left( -2\pi i n t/T \right)