Heat transfer on a cylinder (doubt)

AI Thread Summary
The discussion revolves around a heat transfer problem involving a cylinder with specific boundary conditions: insulated sides, a heat source at the bottom face at 9°C, and a top face influenced by a heat transfer coefficient derived from a student's ID number. The original poster questions the validity of their assumption that the radial heat transfer rate (∂u/∂r) is zero due to insulation. Responses confirm that this assumption is correct under the given conditions, leading to a steady-state temperature of 9°C throughout the cylinder. The conversation highlights the importance of applying the correct boundary conditions and solving the steady heat equation in cylindrical geometry. Ultimately, the poster seeks clarification on their approach to a problem that has lingered in their memory for a decade.
Adrian F
Messages
7
Reaction score
0
Hi, there.

I remember when I was in the University (mech. engineering), I had an exam on partial differential equations about heat transfer in a cylinder. We had to determine the temperature distribution. I remember the conditions were that the cylinder was insulated in the side area, had a heat source in the bottom face at 9°C and the top face had a heat transfer coefficient that was taken from a digit in the student's ID number. For my particular case, this digit was 0, so I knew that the result was going to be that the cylinder ended up at 9º in all of its volume, or that the limit of the temperature function when t (time) tends to infinity equaled 9, independent of any other parameter.

Now, I don't remember the procedure, but I remember that I assumed that the rate of heat transfer in the radial direction or ∂u/∂r was going to be 0 because there's no heat being transfer in that direction and proceded from there. I got the result right: Lim(T) when t tends to infinity = 9 and wrote the reasoning. The teacher gave me all points in the problem because of the reasoning but said that the procedure was wrong.

My question is, was I correct in making that assumption? If anyone could maybe solve this problem here, I'd appreciated.This happened 10 years ago, but I never got the answer. It's been bugging me ever since and I forgot about D.E.

Thanks in advance
 
Science news on Phys.org
This is a 1D transient heat transfer problem in the axial z direction. Do you remember the partial differential equation describing transient heat conduction in 1D?

Chet
 
Q = kA(T1-T2), right?

Edit: no, nevermind. That's not a DE. I don't remember!

Since you say this is a 1D transient heat transfer problem, I take it that my initial assumption was correct. Am I right?
 
Last edited:
Your approach was correct only if the cylinder is perfectly insulated on its lateral surfaces. You solve the steady heat equation in 2-D r-z cylindrical geometry, and apply the boundary condition of zero heat flow at the outer radius. This will prove that there is no temperature gradient in the radial direction at steady-state. If the top is also perfectly insulated, the cylinder will reach equilibrium with a spatially uniform temperature.
 
Yes, that was one of the boundary conditions: the cylinder was insultated on its lateral surface. And, because the digit in my ID number was 0, which corresponded to HT coefficient of the top face, the top face was also insulated, so the cylinder was completely insulated except for the bottom face where the heat source was. I'd love to see what I did, because I don't remember. I do remember just assuming that ∂u/∂r = 0.
 
Look up "Transient Heat Conduction" on Google.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top