Helicoidal movement: acceleration vector, arc length, radius of curvature

Michael_0039
Messages
59
Reaction score
7
Homework Statement
The position of a material point in a Cartesian coordinate system 0XYZ given from the equation r=( 3sin(t) , 3cos(t) , 4t ), t : time. Describe in a few words the motion and find the route's length (arc length) from t=5 to t=10. Calculate the accelerattion vector and the radius of curvature at every point on the track.
Relevant Equations
r = ( 3sin(t) , 3cos(t) , 4t )
I have tried to solve it and I would like a confirmation, correction or if something else is suggested... :)

1.jpg


2.jpg
1568626083892.png

Helicoidal movement
 
  • Like
Likes PeroK
Physics news on Phys.org
I think that's correct.
 
  • Like
Likes Michael_0039
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top