nobraner
- 11
- 0
I am trying to calculate the covariant derivative of the Ricci Tensor the way Einstein did it, but I keep coming up with
\nabla_{μ}R_{αβ}=\frac{∂}{∂x^{μ}}R_{αβ}-2\Gamma^{α}_{μ\gamma}R_{αβ}
or
\nabla_{μ}R_{αβ}=\frac{∂}{∂x^{μ}}R_{αβ}-\Gamma^{α}_{μ\gamma}R_{αβ}-\Gamma^{β}_{μ\gamma}R_{αβ}
Any help will be much appreciated.
\nabla_{μ}R_{αβ}=\frac{∂}{∂x^{μ}}R_{αβ}-2\Gamma^{α}_{μ\gamma}R_{αβ}
or
\nabla_{μ}R_{αβ}=\frac{∂}{∂x^{μ}}R_{αβ}-\Gamma^{α}_{μ\gamma}R_{αβ}-\Gamma^{β}_{μ\gamma}R_{αβ}
Any help will be much appreciated.