hmmm :S
http://www.research.att.com/~njas/sequences/eisBTfry00055.txt
%I A063577
%S A063577 1,4,9,25,36,54,45,56,68,106,87,98,100,203,140,154,160,174,165,263,246,
%T A063577 243,157,234,276,280,338,308,343,371,335,299,427,394,497,475,473,405,
%U A063577 524,467,577,485,586,509,492,644,464,677,563,616,582
%N A063577 Smallest power of 4 having just n 2's in its decimal representation.
%t A063577 a = {}; Do[k = 1; While[ Count[ IntegerDigits[4^k], 2] != n, k++ ]; a = Append[a, k],{n, 0, 50} ]; a
%Y A063577 Adjacent sequences: A063574 A063575 A063576 this_sequence A063578 A063579 A063580
%Y A063577 Sequence in context: A045967 A030140 A062503 this_sequence A087058 A046659 A063760
%K A063577 base,nonn
%O A063577 0,2
%A A063577 Robert G. Wilson v (rgwv(AT)rgwv.com), Aug 10 2001
%I A087058
%S A087058 4,9,25,36,64,81,100,144,169,225,256,289,361,400,484,529,625,676,729,
%T A087058 841,900,1024,1089,1156,1296,1369,1521,1600,1764,1849,1936,2116,2209,
%U A087058 2401,2500,2601,2809,2916,3136,3249,3364,3600,3721,3969,4096,4356,4489
%N A087058 Smallest square number greater than 2*n^2.
%F A087058 A087058(n) = A087057(n)^2 = (1 + A001951(n))^2 = (1 + floor[n*sqrt(2)])^2
%e A087058 A087058(10) = 225 because 225 is the smallest square number greater than 2*10^2 = 200.
%Y A087058 Cf. A001951, A087055, A087056, A087057, A087059, A087060.
%Y A087058 Adjacent sequences: A087055 A087056 A087057 this_sequence A087059 A087060 A087061
%Y A087058 Sequence in context: A030140 A062503 A063577 this_sequence A046659 A063760 A046451
%K A087058 easy,nonn
%O A087058 1,1
%A A087058 Jens Voss (jens(AT)voss-ahrensburg.de), Aug 07 2003
%I A046659
%S A046659 1,4,9,25,36,100,121,225,289,484,529,841,900,1089,1156,1681,2116,2209,
%T A046659 2601,2809,3364,3481,4356,4761,5041,6724,6889,7225,7569,7921,8836,
%U A046659 10201,10404,11236,11449,12769,13225,13924,15129,17161,18769,19044
%N A046659 Sum of divisors and sum of cubes of divisors are relatively prime.
%C A046659 It appears that (a) all the numbers are squares, (b) the number of divisors is a power of 3.
%C A046659 It can be shown that this is a subset of A028982.
%e A046659 x=100 with 9 divisors whose sum is 217=7*31 and sum of cubes of divisors is 1149823=19*73*829; GCD[ 217,1149823 ]=1
%Y A046659 Cf. A028982, A046679 - A046981, A046983, A046985.
%Y A046659 Adjacent sequences: A046656 A046657 A046658 this_sequence A046660 A046661 A046662
%Y A046659 Sequence in context: A062503 A063577 A087058 this_sequence A063760 A046451 A082200
%K A046659 nonn
%O A046659 1,2
%A A046659 Labos E. (labos(AT)ana1.sote.hu)