MHB Help finding length of perpendiculars in a box of known dimension

Click For Summary
The discussion focuses on calculating the distances from a point within a box to its walls along perpendicular lines. The user has known distances from the center of each wall to the point of interest and seeks to determine the closest distances to the walls, labeled as B1 to B4. A mathematical approach is proposed, using a coordinate system centered in the box and a system of equations to relate the known distances (C1 to C4) to the unknown coordinates (x, y). The solution provided allows the user to derive the distances to the walls effectively. This method successfully addresses the user's research problem.
ttk
Messages
2
Reaction score
0
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

View attachment 5915
 

Attachments

Mathematics news on Phys.org
ttk said:
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

Hey ttk! Welcome to MHB! ;)

Let's pick the center of the square to be our origin.
And let's pick the coordinates of the point of interest to be $(x,y)$.
Oh, we already had an $x$ for the side of the square. :eek:
Well, let's discard that one, and let's pick $h$ to be half the side of the square, if you don't mind.
I just like $x$ and $y$ to be my unknowns, and use other letters for known values.

With those choices, we have the following system of equations:
\[\begin{cases}
x^2 + (h-y)^2 = C_1^2 \\
(h-x)^2 + y^2 = C_2^2 \\
x^2 + (h+y)^2 = C_3^2 \\
(h+x)^2 + y^2 = C_4^2
\end{cases}
\Rightarrow\begin{cases}
x^2 + y^2 - 2hy = C_1^2 - h^2\\
x^2 + y^2 - 2hx= C_2^2 - h^2 \\
x^2 + y^2 +2hy = C_3^2 - h^2 \\
x^2 + y^2 +2hx = C_4^2 - h^2
\end{cases}
\Rightarrow\begin{cases}
4hx= (C_4^2-h^2) - (C_2^2 - h^2) \\
4hy = (C_3^2 - h^2) - (C_1^2 - h^2) \\
\end{cases}
\Rightarrow\begin{cases}
x= \frac{C_4^2 - C_2^2}{4h} \\
y = \frac{C_3^2 - C_1^2}{4h} \\
\end{cases}
\]

Does that satisfy your needs? (Wondering)
 
You cracked it! Thanks so much. With x,y, I can easily determine the distance to the walls. Can't thank you enough. Take care,

Terry
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K