MHB Help finding length of perpendiculars in a box of known dimension

ttk
Messages
2
Reaction score
0
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

View attachment 5915
 

Attachments

Mathematics news on Phys.org
ttk said:
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

Hey ttk! Welcome to MHB! ;)

Let's pick the center of the square to be our origin.
And let's pick the coordinates of the point of interest to be $(x,y)$.
Oh, we already had an $x$ for the side of the square. :eek:
Well, let's discard that one, and let's pick $h$ to be half the side of the square, if you don't mind.
I just like $x$ and $y$ to be my unknowns, and use other letters for known values.

With those choices, we have the following system of equations:
\[\begin{cases}
x^2 + (h-y)^2 = C_1^2 \\
(h-x)^2 + y^2 = C_2^2 \\
x^2 + (h+y)^2 = C_3^2 \\
(h+x)^2 + y^2 = C_4^2
\end{cases}
\Rightarrow\begin{cases}
x^2 + y^2 - 2hy = C_1^2 - h^2\\
x^2 + y^2 - 2hx= C_2^2 - h^2 \\
x^2 + y^2 +2hy = C_3^2 - h^2 \\
x^2 + y^2 +2hx = C_4^2 - h^2
\end{cases}
\Rightarrow\begin{cases}
4hx= (C_4^2-h^2) - (C_2^2 - h^2) \\
4hy = (C_3^2 - h^2) - (C_1^2 - h^2) \\
\end{cases}
\Rightarrow\begin{cases}
x= \frac{C_4^2 - C_2^2}{4h} \\
y = \frac{C_3^2 - C_1^2}{4h} \\
\end{cases}
\]

Does that satisfy your needs? (Wondering)
 
You cracked it! Thanks so much. With x,y, I can easily determine the distance to the walls. Can't thank you enough. Take care,

Terry
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top