cyturk
- 8
- 0
Homework Statement
Find the general solution to
y'''+y=0
Homework Equations
The Attempt at a Solution
y''+y=0
r^3+1=0
r^3=-1
r=(-1)^(1/3)
---------------------
-1=-1+0i
-1=cos(pi)+isin(pi)=e^(i*pi)
-1=cos(pi+2xpi)+isin(pi+2xpi)=e^i(pi+2xpi)
--------------------------
(-1)^(1/3)=(e^i(pi+2xpi))^(1/3)
(-1)^(1/3)=(e^i(pi/3+2xpi/3))
(-1)=cos(pi/3+2xpi/3)+isin(pi/3+2xpi/3)
-----------------------------
How do I get this to the general solution form? I know I do something where I let x=0,1,2,3,etc.
But I am not on sure what steps to take.
The answer on Wolfram Alpha is
"y(x) = c_1 e^(-x)+c_2 e^(x/2) sin((sqrt(3) x)/2)+c_3 e^(x/2) cos((sqrt(3) x)/2)"
Thanks in advance!