ozarga
- 2
- 0
Homework Statement
Hello, I'm having problems with the following exercise from my homework.
Proof that when A\subseteqB, then it happens that C-B\subseteqC-A
Homework Equations
The Attempt at a Solution
This is how I have been trying to solve it:
1. A\subseteqB // Hyp
2. x\inA\rightarrowx\inB //Element wise proof [1]
3. x\inA \wedge x\inB // which rule allow me to do this? [2]
4. ( x\inA \wedge x\inB) \vee x\inC // Addition [3]
5. (x\inA\veex\inC)\wedge(x\inB\veex\inC) // Distrivutive law [4]
6. x\inA\veex\inC // \wedge OUT [5]
7. x\inB\veex\inC // \wedge OUT [5]
8. y\inC // Hyp (This step is the very confusing one. I'm assuming it exists an element of one set I have no information it actually exists)
9. y\notinB // Modus Ponendo Tollens [7,8]
10. y\inC\wedgey\notinB // \wedge IN [8,9]
11. y\notinA // Modus Ponendo Tollens [6,8]
12. y\inC\wedgey\notinA // \wedge IN [8,11]
13. y\inC\wedgey\notinB \rightarrow y\inC\wedgey\notinA // CP [10, 12]
14. C-B \subseteq C-A // Defs of Difference [13] & Element wise proof
Sorry for my poor english. Thanks in advance for your help.