Understanding Partial Derivatives in Harmonic Functions

yungman
Messages
5,741
Reaction score
294

Homework Statement



Show if v is harmonic ie. \; \nabla^2v=0 \; , then \nabla^2u=0 \hbox { where } u(x,y)=v(x^2-y^2,2xy)

\nabla^2u=0 \;\Rightarrow\; u_{xx}+u_{yy} = 0

From the book:

For u(x,y)=v(x^2-y^2,2xy)

u_x=2xv_x + 2yv_y

u_{xx} = 4x^2v_{xx} + 8 xyv_{xy} + 4y^2v_{yy} + 2v_x

u_y=2yv_x + 2xv_y

u_{yy} = 4y^2v_{xx} - 8 xyv_{xy} + 4x^2v_{yy} - 2v_x

\nabla^2u = u_{xx} + u_{yy} = (4x^2+4y^2)(v_{xx}+v_{yy}) = 0




This is my work:

I don't understand the solution the book gave.

\nabla^2u = \nabla \cdot \nabla u = \nabla \cdot \nabla v(x^2-y^2,2xy)

\nabla v(x^2-y^2,2xy) = [ \frac{\partial v}{\partial (x^2-y^2) } \frac{\partial (x^2-y^2) }{\partial x } + \frac{\partial v}{\partial (2xy) } \frac{\partial (2xy) }{\partial x }]\hat{x} \;+\; [\frac{\partial v}{\partial (x^2-y^2) } \frac{\partial (x^2-y^2) }{\partial y } + \frac{\partial v}{\partial (2xy) } \frac{\partial (2xy) }{\partial y }]\hat{y}

\nabla v(x^2-y^2,2xy) = [2x\frac{\partial v}{\partial (x^2-y^2) } \;+\; 2y \frac{\partial v}{\partial (2xy) } ] \;\hat{x} \;\;+\;\; [-2y\frac{\partial v}{\partial (x^2-y^2) } \;+\; 2x \frac{\partial v}{\partial (2xy) } ] \;\hat{y}

\nabla^2 v = \nabla \cdot \nabla v = \frac{\partial}{\partial x} [2x\frac{\partial v}{\partial (x^2-y^2) } \;+\; 2y \frac{\partial v}{\partial (2xy) } ] \;\;+\;\; \frac{\partial}{\partial y} [-2y\frac{\partial v}{\partial (x^2-y^2) } \;+\; 2x \frac{\partial v}{\partial (2xy) } ]

\nabla^2 v = 4(x^2+y^2) [ \frac{\partial v}{\partial (x^2-y^2) } + \frac{\partial v}{\partial (2xy) }]



I don't even understand how u_x=2xv_x + 2yv_y

And u_{xx} = 4x^2v_{xx} + 8 xyv_{xy} + 4y^2v_{yy} + 2v_x

here stand for?


What is v_x,\; v_{xx},\; v_y \hbox { and } v_{yy}


Please help explain to me.

Thanks

Alan
 
Last edited:
Physics news on Phys.org
Anyone please?
 
Please!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top