Help indexed family sets proof

  • Thread starter Thread starter IntroAnalysis
  • Start date Start date
  • Tags Tags
    Proof Sets
IntroAnalysis
Messages
58
Reaction score
0

Homework Statement


Ai and Bi are indexed families of sets. Prove that Ui (Ai \bigcap Bi) \subseteq (UiAi) \bigcap (UiBi).


Homework Equations





The Attempt at a Solution


Suppose arbitrary x. Let x \in
{x l \foralli\inI(x\inAi\bigcapBi)
This means x \in{x l \foralli\inI(x\inAi)\wedge\foralli\inI(x\inBi).

Homework Statement


This means x \in\neg\existsi\inI(x\notinAi)\wedge\neg\existsi\inI(x\in\notinBi)}
Which is equivalent to: x\in{x l \existsi\inI(x\inAi)\wedge\existsi\inI(x\inBi)}
Therefore, x\in{x l (\bigcupi\inIAi)\bigcap(Ui\inIBi)}
Therefore, is equiv. to Ui\inI(Ai\bigcapBi), then x\in(Ui\inIAi)\bigcap(Ii\inIBi).
Therefore Ui\inI(Ai\bigcapBi)\subseteq(Ui\inIAi)\bigcap(Ii\inIBi).
 
Physics news on Phys.org
IntroAnalysis said:

The Attempt at a Solution


Suppose arbitrary x. Let x \in
{x l \foralli\inI(x\inAi\bigcapBi)

Are you trying to being by taking an arbitrary x in \bigcup_{i=1}^\infty (A_i \cap B_i) ? If so, why are you applying the "\forall" quantifier to the index?

I suggest beginning this way:

Let x be an arbitrary element of \bigcup_{i=1}^\infty (A_i \cap B_i)

For such an x, we know that there exists an index j such that x \in A_j \cap B_j. This follows from the definition and properties of a union of sets.

This implies x \in A_j and x \in B_j by definition of an intersection of two sets.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top