Help Me Solve a Physics Homework Problem - Lagrange Points

AI Thread Summary
Lagrange points, discovered by Joseph Louis Lagrange, are positions in space where a smaller mass can remain stationary relative to two larger masses, such as the Earth and the Sun. Specifically, for the Earth-Sun system, L1 and L2 points can be calculated using the Hill Sphere, while L3 is located on the opposite side of the Sun at 2 AU. L4 and L5 points form equilateral triangles with the Earth and Sun, each being 1 AU away from both. It is noted that the masses of the two orbiting bodies do not need to be significantly smaller than the larger mass for L4 and L5 points to exist. Understanding these points is crucial for space missions and satellite positioning.
Meistro
Messages
5
Reaction score
0
Hey a friend asked me for help on his physics homework, and I found this place and was wondering if you guys could help me out.

2: In 1772, the famed Italian-French mathematician Joseph Louis Lagrange was working on the infamous three-body problem when he discovered an intersting quirk in the results. If one mass is much smaller than the other two then there will exist points where this object can be stationary with respect to one of the two masses. These points are known as Lagrange points in his honor. In our treatment we could consider these points to be equilibrium points for a system. If we wanted to find Lagrange point for the Earth-Sun system located between the Earth and the Sun how far from the Earth is this point and what is the significance of the other solution? The mass of the Earth is 5.98 X 10^24 kg, the mass of the Sun is 1.991 x 10^30 kg and the radius of the Earth's orbit is 1.496 x 10^11 m. (solve using quadratic eq.)
 
Physics news on Phys.org
Google for Hill Sphere. Wikipedia has a good site. The Hill Sphere will give you the distance to the L1 and L2 points.

L3 is in Earth's orbit, on the opposite side of the Sun, so it is exactly 2 AU away.

L4 and L5 are 60 degrees ahead of and behind the Earth. The Earth, Sun, and L4 form an equilateral triangle, as do the Earth, Sun, and L5. So the Earth L5 distance is 1 AU. The Earth L4 distance is 1 AU. The Sun is also 1 AU from both these points.

Actually, one mass doesn't need to be smaller than the other two, at least for the L4 & L5. And I suspect the other 3 L points as well. The two orbiting masses combined need to be at most ~1/25 the mass of the large object. It's possible for an Earth-mass planet to be in Earth's L4 or L5 point.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top