How to Integrate (r^2 + a^2)^-3/2 using u-substitution

  • Thread starter Thread starter -EquinoX-
  • Start date Start date
  • Tags Tags
    Integral Skills
-EquinoX-
Messages
561
Reaction score
1

Homework Statement


\int_0^R \! \frac{2rdr}{(r^2+x^2)^{\frac{3}{2}}}
\int_0^R \! (r^2+x^2)^{-\frac{3}{2}}}d(r^2)

Homework Equations


The Attempt at a Solution


how did you get from line 1 to 2
 
Physics news on Phys.org
d(r^2)=2rdr
 
oh I see... so d(r^2) just basically means taking the derivative of r^2 with respect with r?
I am not familiar with that notation
 
Not quite. d\left(r^2\right) is the differential of r^2 with respect to r.
 
-EquinoX- said:
oh I see... so d(r^2) just basically means taking the derivative of r^2 with respect with r?
I am not familiar with that notation
I bet you are! (plus or minus a twist)

Consider I = \int (u + a^2)^{-\frac{3}{2}} \, du.

Let u = r^2, so du = 2r\, dr. Then

I = \int (r^2 + a^2)^{-\frac{3}{2}} \, 2r \, dr\, \text{!}
 
Unco said:
I bet you are! (plus or minus a twist)

Consider I = \int (u + a^2)^{-\frac{3}{2}} \, du.

Let u = r^2, so du = 2r\, dr. Then

I = \int (r^2 + a^2)^{-\frac{3}{2}} \, 2r \, dr\, \text{!}

thanks for clearing that up
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top