Is f(x) Increasing for Positive x and a in (0,1)?

lys111
Messages
2
Reaction score
0
I am supposed to show f(x) is increasing in x when x is real and positive.

f(x)= [(x+2)*(1-a^(x+1)] / [1-(x+2)*(1-a)*a^(x+1)-a^(x+2)]

a is any real in (0,1); x is real and positive

I have taken and first derivative of f(x):

f'(x)=1-a^(x+1)-a^(x+2)+(x+1)*(x+2)*log(a)*(a^(x+1)-a^(x+2))+a^(2x+3)

The problem is I cannot compare log(a) with the power of a. Can any of you genius help me with a proof as to showing f'(x) >0? Or maybe there is some other way to show f(x) is increasing in positive x?
 
Last edited:
Physics news on Phys.org
lys111 said:
f(x)= [(x+2)*(1-a^(x+1)] / [1-(x+2)*(1-a)*a^(x+1)-a^(x+2)]
Please clarify the bracketing, preferably with LaTex. Is it
##f(x)=\frac{(x+2)*(1-a^{x+1})}{1-(x+2)*(1-a)*a^{x+1}-a^{x+2}}## ?
 
Yes, it is. I am sorry about the typing/.

f(x)=\frac{(x+2)*(1-a^{x+1})}{1-(x+2)*(1-a)*a^{x+1}-a^{x+2}}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top