trv
- 72
- 5
A little stuck while working through a derivation. Hope someone can help.
Starting from
<br /> -\xi^c(\Gamma^d_{ca}g_{db}+\Gamma^d_{cb}g_{ad})+\partial_b\xi^dg_{ad}+\partial_a\xi^cg_{cb}=0<br />
I need to obtain the Killing equations, i.e.
<br /> \bigtriangledown_b\xi_a+\bigtriangledown_a\xi_b=0<br />
Working backwards...
Rewriting the covariant derivative in terms of the partial derivative gives
<br /> \bigtriangledown_b\xi_a+\bigtriangledown_a\xi_b=\partial_a\xi_b+\partial_b\xi_a-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c=0<br />
Lowering the vector in the partial derivatives gives...
<br /> \partial_a\xi_b+\partial_b\xi_a-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c=-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c+\partial_b\xi^dg_{ad}+\partial_a\xi^cg_{cb}=0<br />
I don't however know how to go from
<br /> -\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c
to
<br /> -\xi^c(\Gamma^d_{ca}g_{db}+\Gamma^d_{cb}g_{ad})
Can someone help?
Homework Statement
Starting from
<br /> -\xi^c(\Gamma^d_{ca}g_{db}+\Gamma^d_{cb}g_{ad})+\partial_b\xi^dg_{ad}+\partial_a\xi^cg_{cb}=0<br />
I need to obtain the Killing equations, i.e.
<br /> \bigtriangledown_b\xi_a+\bigtriangledown_a\xi_b=0<br />
Homework Equations
The Attempt at a Solution
Working backwards...
Rewriting the covariant derivative in terms of the partial derivative gives
<br /> \bigtriangledown_b\xi_a+\bigtriangledown_a\xi_b=\partial_a\xi_b+\partial_b\xi_a-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c=0<br />
Lowering the vector in the partial derivatives gives...
<br /> \partial_a\xi_b+\partial_b\xi_a-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c=-\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c+\partial_b\xi^dg_{ad}+\partial_a\xi^cg_{cb}=0<br />
I don't however know how to go from
<br /> -\Gamma^c_{ba}\xi_c-\Gamma^c_{ab}\xi_c
to
<br /> -\xi^c(\Gamma^d_{ca}g_{db}+\Gamma^d_{cb}g_{ad})
Can someone help?