Help on calculus od Partial Differential Expression

bdjerida
Messages
1
Reaction score
0
Hi,

I'm looking to compute the following expression:

<br /> \int \left((\frac{\pat f(x,y)}{\pat x})^{2}+(\frac{\pat f(x,y)}{\pat y})^{2}\right)dxdy<br />

any body could help me or there is well-known formula for this expression?

thanks,
 
Physics news on Phys.org
That is, of course, the same as
\int f^2(x,y) \left(\frac{1}{x^2}+ \frac{1}{y^2}\right)dxdy

Other than that, how you integrate it will depend strongly on f(x,y).
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top