Maximizing Enclosed Areas: Calculus Techniques for Optimization

  • Thread starter Thread starter pyrojelli
  • Start date Start date
  • Tags Tags
    Optimization
pyrojelli
Messages
16
Reaction score
0
:cry:Sorry to ask such a question, but our study group is at a loss as how to continue and our homework is due tomorrow. So here goes:

In order to receive credit we MUST use calculus techniques:

We have a piece of wire that is 100cm long and we're going to cut it into two pieces. One piece will be bent into a square and the other will be bent into a circle. Determine where the wire should be cut so that the enclosed areas will be at maximum. Note that it is possible to have the whole piece of wire go either to the square or to the circle:cry:
 
Physics news on Phys.org
OK, what have you done so far?
 
:redface:Sorry, I was in a rush and shouldv'e included that, thanks anyway, the problem has already been resolved.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top