Help solving non homogenous second order ODEs

  • Thread starter Thread starter seang
  • Start date Start date
  • Tags Tags
    Odes Second order
seang
Messages
184
Reaction score
0
I'm using the method of undetermined coefficients here, but I'm either not making the correct ansatz or I'm just confused on the method.

The problem is 2y'' + 3y' + y = t^2.

I gussed Y = At^2. Is this correct? It doesn't solve the differential equation, which is the only check I know.

So from there (assuming Y is correct) I plug in and get 4A +6At + At^2 = t^2. Now I don't know what to do next.
 
Physics news on Phys.org
Try a particular solution of the form Y=At^2+Bt+C where A,B,C are constants. You'll get 3 equations with 3 unknowns to solve.
 
The method of undetermined coefficients relies on all linear combinations of the linearly independent derivatives of the RHS. You really don't know yet whether there are lower power terms on the LHS that have simply canceled out. So your Y should be Y(t) = At^2 + 2Bt + 2C = At^2 + Dt + E. Plug this Y into the original equation and you will get a system of 3 linear equations that is easily solved for the coefficients A, D and E.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top