Help Solving ODE: y'' - 4k^2 y^2 = 0

  • Thread starter Thread starter eckiller
  • Start date Start date
  • Tags Tags
    Ode
eckiller
Messages
41
Reaction score
0
I need help completing this problem:

y'' - 4k^2 y^2 = 0, y(0) = 2, y'(0) = 4k, k > 0 and fixed constant

Let v = y'

dv/dx = dv/dy * dy/dx = dv/dy * v

dv/dy * v - 3k^2 y^2 = 0

Integral( v dv ) = Integral( 3k^2 y^2 )

v^2 = 2k^2 y^3 + C0

v(0) = 4k ==> C0 = 16k^2

dy/dx = sqrt( 2k^2 y^3 + 16k^2 )

I think this is separable, but I can't do the integral, so I think I messed up somewhere.
 
Physics news on Phys.org
Your equation for v(0) is wrong, since v(0)=4k ==> 16k^2 = 2k^2*y(0)^3 + C0 = 2k^2 * 8 * C0 ==> C0 = 0. This makes the separable equation easier.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top