latentcorpse
- 1,411
- 0
I have a very simple question about the Dirac equation that I just cannot see the answer to.
In these notes:
http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
In equation 4.115, I keep getting
u( \vec{p} ) = \begin{pmatrix} \sqrt{p \cdot \sigma} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \sqrt{ p \cdot \bar{\sigma}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \sqrt{E - p \sigma^3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \sqrt{E + p \sigma^3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}
So why does p^3 = p \sigma^3 or is there a typo?
I would have thought that since p^\mu = ( E,0,0,p), we should get p^3=p, no?
Thanks for any help!
In these notes:
http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
In equation 4.115, I keep getting
u( \vec{p} ) = \begin{pmatrix} \sqrt{p \cdot \sigma} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \sqrt{ p \cdot \bar{\sigma}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \sqrt{E - p \sigma^3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \sqrt{E + p \sigma^3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}
So why does p^3 = p \sigma^3 or is there a typo?
I would have thought that since p^\mu = ( E,0,0,p), we should get p^3=p, no?
Thanks for any help!