Help w/ understanding concept of distributing a neg. sign

  • Thread starter Thread starter Teabreeze
  • Start date Start date
  • Tags Tags
    Concept Sign
AI Thread Summary
Distributing a negative sign in an expression like -(-x^2 + 12x + 24) involves applying the distributive property, treating the negative sign as -1. This means each term inside the parentheses is multiplied by -1, resulting in x^2 - 12x - 24. The discussion highlights that while it's not strictly necessary to distribute, doing so can simplify more complex expressions and prevent errors. Confusion arises from the perception that parentheses indicate a "whole unit," but algebra allows for operations on individual terms within parentheses. Understanding this principle is crucial for correctly manipulating algebraic expressions.
Teabreeze
Messages
4
Reaction score
0

Homework Statement


Basically, I have to distribute this negative sign in this math expression:

- (-x^2 + 12x +24)

Homework Equations


none

The Attempt at a Solution



I know from the rules that we get:

(x^2 - 12x - 24)

My question is why do we distribute the negative sign to begin with? I thought we treat everything in parenthesis in math as a whole unit. So why do we go in and distribute the negative sign to EACH term?

tym
 
Physics news on Phys.org
Teabreeze said:

Homework Statement


Basically, I have to distribute this negative sign in this math expression:

- (-x^2 + 12x +24)

Homework Equations


none

The Attempt at a Solution



I know from the rules that we get:

(x^2 - 12x - 24)

My question is why do we distribute the negative sign to begin with? I thought we treat everything in parenthesis in math as a whole unit. So why do we go in and distribute the negative sign to EACH term?

tym
The simplest way to look at this is by considering that the minus sign out front is -1. So ##-(-x^2 + 12x + 24) = -1(-x^2 + 12x + 24)##. Using the distributive law, the last expression becomes ##x^2 - 12x - 24##.
 
Hi Teabreeze:

There is not any requirement that distributing the minus sigh is necessary, but sometimes it is convenient, and it is useful to have an easy to understand rule when one wants to take advantage of the convenience. An example of when it might be convenient is when you have a more complicated expression you want to simplify, e.g.,
- (- 3x2 - 12x - 24) + (4x2 - (2x - 6))​
In this case distributing minus signs can help you avoid mental errors while doing the simplification.

Regards,
Buzz
 
You know distributivity?
a(b + c) = ab + bc

Now if a = -1, then -1(b + c) = -b - c
We just do not write the '1'. We write -(a+b) instead of -1(a + b).

Also, think about it with examples.
For example, -2(3 + 4) = -6 - 8 = -14
 
  • Like
Likes ProfuselyQuarky
Math_QED said:
You know distributivity?
a(b + c) = ab + bc

Now if a = -1, then -1(b + c) = -b - c
We just do not write the '1'. We write -(a+b) instead of -1(a + b).

Also, think about it with examples.
For example, -2(3 + 4) = -6 - 8 = -14

You wrote:

a(b+c) = ab + bc

BUT, I thought distributive property was this instead:
a(b+c) = ab +ac

Is this the correct version or is yours the correct one?

Thanks.
 
Teabreeze said:
You wrote:

a(b+c) = ab + bc

BUT, I thought distributive property was this instead:
a(b+c) = ab +ac

Is this the correct version or is yours the correct one?
Yes. @Math_QED made a mistake (typo I guess). The numerical example is correct.
 
  • Like
Likes Teabreeze
Buzz Bloom said:
Hi Teabreeze:

There is not any requirement that distributing the minus sigh is necessary, but sometimes it is convenient, and it is useful to have an easy to understand rule when one wants to take advantage of the convenience. An example of when it might be convenient is when you have a more complicated expression you want to simplify, e.g.,
- (- 3x2 - 12x - 24) + (4x2 - (2x - 6))​
In this case distributing minus signs can help you avoid mental errors while doing the simplification.

Regards,
Buzz

I think I'm confused, because I thought we literally couldn't distribute. In other words, I thought at that having some expression in parenthesis meant that that WHOLE thing was a "unit" and whatever you do to it, then you must do it to the whole thing.

So, when you distribute the way I did in the original example, it's "going into the unit" and placing a minus sign in front of each term. But that to me means we're messing with the parenthesis. I thought that parenthesis means you HAVE to treat something as a whole unit. So if you want to subtract that unit (everything inside the parenthesis), then you have to subtract the value of the WHOLE thing.

How can you put a minus sign onto each individual part of the whole thing and have that work? So still a bit confused guys. Am I missing something?
 
Teabreeze said:
I think I'm confused, because I thought we literally couldn't distribute. In other words, I thought at that having some expression in parenthesis meant that that WHOLE thing was a "unit" and whatever you do to it, then you must do it to the whole thing.

So, when you distribute the way I did in the original example, it's "going into the unit" and placing a minus sign in front of each term. But that to me means we're messing with the parenthesis. I thought that parenthesis means you HAVE to treat something as a whole unit. So if you want to subtract that unit (everything inside the parenthesis), then you have to subtract the value of the WHOLE thing.

How can you put a minus sign onto each individual part of the whole thing and have that work? So still a bit confused guys. Am I missing something?
Do you have a problem with distributing the 2 in ##\ 2(x+3) \ ## which then gives you ##\ 2x+6 \ ?##
 
Teabreeze said:
I think I'm confused, because I thought we literally couldn't distribute. In other words, I thought at that having some expression in parenthesis meant that that WHOLE thing was a "unit" and whatever you do to it, then you must do it to the whole thing.

So, when you distribute the way I did in the original example, it's "going into the unit" and placing a minus sign in front of each term. But that to me means we're messing with the parenthesis. I thought that parenthesis means you HAVE to treat something as a whole unit. So if you want to subtract that unit (everything inside the parenthesis), then you have to subtract the value of the WHOLE thing.

How can you put a minus sign onto each individual part of the whole thing and have that work? So still a bit confused guys. Am I missing something?
Yes. The parentheses are there just to clarify the expression - to make sure that readers understand what goes with what.

For example, if some one were to write 3 - 2/4 +6, then it is unclear what is meant. One could say that 3 - 2/4 + 6 = 9.5, but then again
if one sees (3 - 2) / (4 + 6), then it becomes clear that this is equivalent to 1/10 and nothing else.

Still, one is able to take the negative of such an expression as - (3 - 2) / (4 + 6) = (-3 - (-2)) / ( 4 + 6) = (-3 + 2) / (4 + 6) = -1/10.

This "unit" interpretation which you seem to think applies breaks down if you have an expression like (a + b) ⋅ (c + d).

The rules of algebra give the product (a + b) ⋅ (c + d) = ac + ad + bc + bd, which otherwise could not be obtained if you were not permitted to distribute multiplication over addition.
 
Back
Top