rustynail
- 53
- 0
I was playing a bit with the Riemann Zeta function, and have been struggling with some notation problems.
The function is defined as follows
\zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^s}
where s \in \mathbb{C}
we know that
n^s = exp(s\;ln\;n)
so I can write
\zeta (s) = \sum_{n=1}^{\infty} \frac{1}{exp(s\;ln\;n)}
but since
\frac{1}{exp(s\;ln\;n)} = 1 + \frac{1!}{(s\;ln\;n)} + \frac{2!}{(s\;ln\;n)^2} + ... = <br /> 1 + \sum_{n=1}^{\infty} \frac{n!}{(s\;ln\;n)^n}
how can I write this ''sum within a sum''? ζ(s) here, if I am correct, would be an infinite sum of terms which are infinite sums.
Thank you for taking the time to help!edit :
Could I say
1 + \sum_{n=1}^{\infty} \frac{n!}{(s\;ln\;n)^n} = a_k
then
\zeta (s) = \sum_{k=1}^{\infty} a_k
Does that make any sense?
The function is defined as follows
\zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^s}
where s \in \mathbb{C}
we know that
n^s = exp(s\;ln\;n)
so I can write
\zeta (s) = \sum_{n=1}^{\infty} \frac{1}{exp(s\;ln\;n)}
but since
\frac{1}{exp(s\;ln\;n)} = 1 + \frac{1!}{(s\;ln\;n)} + \frac{2!}{(s\;ln\;n)^2} + ... = <br /> 1 + \sum_{n=1}^{\infty} \frac{n!}{(s\;ln\;n)^n}
how can I write this ''sum within a sum''? ζ(s) here, if I am correct, would be an infinite sum of terms which are infinite sums.
Thank you for taking the time to help!edit :
Could I say
1 + \sum_{n=1}^{\infty} \frac{n!}{(s\;ln\;n)^n} = a_k
then
\zeta (s) = \sum_{k=1}^{\infty} a_k
Does that make any sense?