Help with differential equation

Fiorella
Messages
17
Reaction score
0
Solve with convolution integral:

Click http://i3.photobucket.com/albums/y62/Phio/eq.jpg" to see the equation.

So far what I've got is http://i3.photobucket.com/albums/y62/Phio/attempt.jpg" . I don't know what else to do from there, or if what I'm doing is right...


Any help appreciated!
 
Last edited by a moderator:
Physics news on Phys.org
First, c_3 should be equal to k from your DE should it not?

Second,

X(s)=\frac{F(s)}{s^2+k}+\frac{c_1s}{s^2+k}+\frac{c_2}{s^2+k}\implies x(t)=\mathcal{L}^{-1} \left\{ \frac{F(s)}{s^2+k}+\frac{c_1s}{s^2+k}+\frac{c_2}{s^2+k} \right\}
=\mathcal{L}^{-1} \left\{ \frac{F(s)}{s^2+k} \right\}+\mathcal{L}^{-1} \left\{ \frac{c_1s}{s^2+k} \right\}+\mathcal{L}^{-1} \left\{ \frac{c_2}{s^2+k} \right\}

You shouldn't have much trouble doing the last two inverse Laplace transforms, and the first one can be done using the convolution rule...
 
gabbagabbahey said:
First, c_3 should be equal to k from your DE should it not?

Second,

X(s)=\frac{F(s)}{s^2+k}+\frac{c_1s}{s^2+k}+\frac{c_2}{s^2+k}\implies x(t)=\mathcal{L}^{-1} \left\{ \frac{F(s)}{s^2+k}+\frac{c_1s}{s^2+k}+\frac{c_2}{s^2+k} \right\}
=\mathcal{L}^{-1} \left\{ \frac{F(s)}{s^2+k} \right\}+\mathcal{L}^{-1} \left\{ \frac{c_1s}{s^2+k} \right\}+\mathcal{L}^{-1} \left\{ \frac{c_2}{s^2+k} \right\}

You shouldn't have much trouble doing the last two inverse Laplace transforms, and the first one can be done using the convolution rule...

Oooh I thought about that...this helps!

Thanks a lot!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top