How do I differentiate this equation for a test tomorrow?

  • Thread starter Thread starter Morphayne
  • Start date Start date
  • Tags Tags
    Differentiation
Morphayne
Messages
13
Reaction score
0
I need help differentiating this equation:

y=(x-1)^2(6^x)

What I have (I went wrong somewhere):

dy/dx = (x-1)[(x-1)(6^x)]

=(x-1)[6^x(1+ x ln6 - ln6)

=(x-1)6^x(1+ x ln6 - ln6)

So;

My final answer: (x-1)6^x(1+ x ln6 - ln6)

Answer in the textbook: (x-1)6^x(2+ x ln6 - ln6)

Please help. I need to understand this for a test tomorrow.
 
Physics news on Phys.org
y=(x-1)^2(6^x)

y=(x-1)^26^x I am assuming this is what you want to differentiate with respect to x, right?

First the big structure tells us that we first need to use product rule, after that chain rule and so on, so:

y'=[(x-1)^26^x]'=[(x-1)^2]'6^x+(6^x)'(x-1)^2=2(x-1)6^x+6^xln6(x-1)^2=(x-1)6^x(2+xln6-ln6)
 
This question is so much nicer and faster if you use a special trick called Logarithmic differentiation:
If f(x) = g(x) \cdot h(x) Then \log f(x) = \log(g(x) h(x) ) = \log (g(x)) + \log (h(x)) and so \frac{ f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)}.

So in this case:

\log y = \log (x-1)^2 + \log (6^x) = 2\log (x-1) + x \log 6

\frac{y'}{y} = \frac{2}{x-1} + \log 6

Now just multiply through by y.
 
Last edited:
Just in case the op isn't familiar how to differentiate logs in general:

log_ax=y<=>a^y=x

Lets differentiate implicitly the last part:

y'a^ylna=1=>y'=\frac{1}{a^ylna}=\frac{1}{xlna}

Now, if a=e then ln(e)=1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top