Efficient Integration of x(e^(-x-theta)): Tips and Solutions

  • Thread starter Thread starter confused88
  • Start date Start date
  • Tags Tags
    Integration
confused88
Messages
22
Reaction score
0

Homework Statement


Can someone please help me with integration of x(e^(-x-theta)) Thank you. My working is shown below

The Attempt at a Solution


u = x, du = 1 dx, dv = e^(-x-theta)) v = e^-x+theta+1 / theta + 1

the rest can be seen in the attachment. Can you please check it out, it would be greatly appreciated.Thanks
 

Attachments

  • integration.jpg
    integration.jpg
    27 KB · Views: 375
Physics news on Phys.org
The attachment is pending approval so I can't see it.

Use the substitution u = -x - \theta \Rightarrow x = -(u+\theta) \Rightarrow dx = -du. So our integral is now \int (u + theta)e^u du.

Now use integration by parts.
 
ohhh wow thanks a lot!
 
The first thing I would do is write e^{-x- \theta}= e^{-x}e^{-\theta} and factor out the e^{-\theta}. Your integral is just e^{-\theta}\int xe^{-x}dx which can be done by integration by parts.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top