Help with proof for Dirca Delta Relation

AI Thread Summary
The discussion focuses on proving the Dirac delta relation involving the function g(x) and its derivative. The user seeks assistance in demonstrating the relationship, specifically the scaling property of the Dirac delta function. They reference a link for further clarification and ask about special cases, such as delta(c x + b), and the implications of higher-order terms in the Taylor expansion of g(x) near its zeros. The conversation emphasizes the need for a clear understanding of the mathematical principles involved in the Dirac delta function. Overall, the thread highlights the complexities of working with delta functions in calculus and their applications in physics.
orion141
Messages
8
Reaction score
0
I cannot think of how to go about proving this relationship and was wondering if any of you could help me


</font>\\int^{\\infty}_{-\\infty} f(x) \\delta \\left( g \\left( x \\right) \\right) dx = \\int^{\\infty}_{-\\infty} f(x) \\sum_{i} \\frac{\\delta \\left( x - x_{i} \\right)}{\\left| g' \\left( x_{i} \\right) \\right|} dx,<font color=red>

Thanks
Tom
 
Mathematics news on Phys.org
I am not too good with this latex stuff so let me try again...

\\int^{\\infty}_{-\\infty} f(x) \\delta \\left( g \\left( x \\right) \\right) dx = \\int^{\\infty}_{-\\infty} f(x) \\sum_{i} \\frac{\\delta \\left( x - x_{i} \\right)}{\\left| g' \\left( x_{i} \\right) \\right|} dx
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top