no, the fourth term, not the third one.
Feb 17, 2009 #37 TFM 1,026 0 [tex] hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] ?
[tex] hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] ?
Feb 17, 2009 #39 TFM 1,026 0 Okay so: [tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] Okay, so what should I do now?
Okay so: [tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] Okay, so what should I do now?
Feb 17, 2009 #41 TFM 1,026 0 Well, it asks you to split the function up into imaginary and real parts. Have we sorted this out enough to do this now?
Well, it asks you to split the function up into imaginary and real parts. Have we sorted this out enough to do this now?
Feb 17, 2009 #43 TFM 1,026 0 Okay, so: [tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] Multiply out brackets: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] So should I just out the parts with an i on one side, and the real parts on the other side of the equals sign (ie i f(x) = g(x))?
Okay, so: [tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex] Multiply out brackets: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] So should I just out the parts with an i on one side, and the real parts on the other side of the equals sign (ie i f(x) = g(x))?
Feb 18, 2009 #44 xboy 134 0 No. If you have a complex equation of the form f+ ig = p +is where f,g,p,s are real, it follows that f=p and g=s. Here you have to equate the coefficients of the number i on both sides.
No. If you have a complex equation of the form f+ ig = p +is where f,g,p,s are real, it follows that f=p and g=s. Here you have to equate the coefficients of the number i on both sides.
Feb 18, 2009 #45 TFM 1,026 0 Okay, so: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] So if we start on the left side: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} [/tex] We have: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) [/tex] Does this look okay?
Okay, so: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] So if we start on the left side: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} [/tex] We have: [tex] -\hbar\rho \frac{\partial \phi}{\partial t} + i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) [/tex] Does this look okay?
Feb 18, 2009 #47 TFM 1,026 0 Okay, now for the right side: [tex] \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho} + \frac{\hbar^2 i\phi'\rho' }{4m}+ V\rho [/tex] Thus: [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 i\phi'\rho' }{4m} [/tex] [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 \phi'\rho' }{4m} \right) [/tex] Does this look okay?
Okay, now for the right side: [tex] \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex] [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho} + \frac{\hbar^2 i\phi'\rho' }{4m}+ V\rho [/tex] Thus: [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 i\phi'\rho' }{4m} [/tex] [tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 \phi'\rho' }{4m} \right) [/tex] Does this look okay?
Feb 19, 2009 #49 TFM 1,026 0 So now I have to take the imaginary part. Would that be: [tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi''\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex]
So now I have to take the imaginary part. Would that be: [tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi''\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex]
Feb 19, 2009 #51 TFM 1,026 0 So now I need to compare this: [tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex] to: [tex] -\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi''(x,t) + \frac{\hbar}{m}\rho'(x,t)\phi'(x,t) [/tex] Well is we [tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho''\hbar}{2m} + \frac{\hbar \phi''\rho''}{2m} [/tex] They don't seem to similar...?
So now I need to compare this: [tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex] to: [tex] -\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi''(x,t) + \frac{\hbar}{m}\rho'(x,t)\phi'(x,t) [/tex] Well is we [tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho''\hbar}{2m} + \frac{\hbar \phi''\rho''}{2m} [/tex] They don't seem to similar...?
Feb 20, 2009 #52 xboy 134 0 Oh. Your previous expression was actually incorrect. The last 2 terms in the rhs should have contained single derivatives of both rho and phi, and not double derivativs (compare with the expression prior to that).
Oh. Your previous expression was actually incorrect. The last 2 terms in the rhs should have contained single derivatives of both rho and phi, and not double derivativs (compare with the expression prior to that).
Feb 20, 2009 #53 TFM 1,026 0 [tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{2m} + \frac{\hbar \phi'\rho'}{2m} [/tex] so, [tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{m} [/tex] Now this does look more similar...
[tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{2m} + \frac{\hbar \phi'\rho'}{2m} [/tex] so, [tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{m} [/tex] Now this does look more similar...