Help with Quantum Mechanics and Continuity Equation

Click For Summary
The discussion focuses on solving a homework problem involving a Bose-Einstein condensate described by a wave function. Key points include the calculation of probability density and current density, leading to the formulation of the continuity equation. Participants identify algebraic errors in the current density calculations and clarify the relationship between the continuity equation and the wave function. The conversation also emphasizes the importance of applying product and chain rules when substituting the wave function into the Schrödinger equation. Overall, the thread highlights the complexities of quantum mechanics calculations and the collaborative effort to resolve misunderstandings.
  • #31
Okay so:

i\hbar\left(\rho i \frac{\partial \phi}{\partial t} + \frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(i\phi&#039;i \phi&#039; + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho\rho&#039;\rho&#039;2\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{\rho\rho&#039;}{2} i\phi\rho&#039;\right) + V\rho <br />

Okay so far?
 
Physics news on Phys.org
  • #32
On the third term on the rhs you got an extra rho which wasn't there in your previous steps. Also you can multiply the i s in the first term of the rhs to get -1.
 
  • #33
Okay,

i\hbar\left(\rho i \frac{\partial \phi}{\partial t} + \frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(i\phi&#039;i \phi&#039; + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039;\rho&#039;2\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{\rho\rho&#039;}{2} i\phi\rho&#039;\right) + V\rho

and:

hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{\rho\rho&#039;}{2} i\phi\rho&#039;\right) + V\rho

Does this look better?
 
  • #34
No, it looks to me that the fourth term on the rhs has one extra rho and one extra rho prime, while the prime on phi has disappeared.
 
  • #35
Okay:

hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039; 2\rho - \rho&#039;^2}{4\rho} \right) + \frac{\rho\rho&#039;}{2} i\phi&#039;\rho&#039;\right) + V\rho

Better?
 
  • #36
no, the fourth term, not the third one.
 
  • #37
hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{1}{2} i\phi&#039;\rho&#039;\right) + V\rho <br />

?
 
  • #38
perfectly alright !
 
  • #39
Okay so:

\hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{1}{2} i\phi&#039;\rho&#039;\right) + V\rho

Okay, so what should I do now?
 
  • #40
What does the question ask you to do?
 
  • #41
Well, it asks you to split the function up into imaginary and real parts. Have we sorted this out enough to do this now?
 
  • #42
Yup. Go ahead and split it.
 
  • #43
Okay, so:

\hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{i\phi&#039;\rho&#039;}{2} + \left( \frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} \right) + \frac{1}{2} i\phi&#039;\rho&#039;\right) + V\rho

Multiply out brackets:

-\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} =<br /> \frac{\hbar^2}{2m}\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{\hbar^2}{2m}\frac{i\phi&#039;\rho&#039;}{2} + \frac{\hbar^2}{2m}\frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi&#039;\rho&#039; + V\rho

So should I just out the parts with an i on one side, and the real parts on the other side of the equals sign (ie i f(x) = g(x))?
 
  • #44
No. If you have a complex equation of the form

f+ ig = p +is where f,g,p,s are real, it follows that f=p and g=s. Here you have to equate the coefficients of the number i on both sides.
 
  • #45
Okay, so:

-\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{\hbar^2}{2m}\frac{i\phi&#039;\rho&#039;}{2} + \frac{\hbar^2}{2m}\frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi&#039;\rho&#039; + V\rho

So if we start on the left side:

-\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t}

We have:

-\hbar\rho \frac{\partial \phi}{\partial t} + i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right)

Does this look okay?
 
  • #46
Yes. go on.
 
  • #47
Okay, now for the right side:

\frac{\hbar^2}{2m}\rho(-\phi&#039;^2 + i\phi&#039;&#039;) + \frac{\hbar^2}{2m}\frac{i\phi&#039;\rho&#039;}{2} + \frac{\hbar^2}{2m}\frac{\rho&#039;^22\rho - \rho\rho&#039;^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi&#039;\rho&#039; + V\rho

-\frac{\hbar^2\rho\phi&#039;^2 }{2m} + \frac{\hbar^2\rho i\phi&#039;&#039;}{2m} + \frac{i\phi&#039;\rho&#039;\hbar^2}{4m} + \frac{\hbar^2\rho&#039;^22\rho - \hbar^2\rho\rho&#039;^2}{8m\rho} + \frac{\hbar^2 i\phi&#039;\rho&#039; }{4m}+ V\rho

Thus:

-\frac{\hbar^2\rho\phi&#039;^2 }{2m} +\frac{\hbar^2\rho&#039;^22\rho - \hbar^2\rho\rho&#039;^2}{8m\rho}+ V\rho + \frac{\hbar^2\rho i\phi&#039;&#039;}{2m} + \frac{i\phi&#039;\rho&#039;\hbar^2}{4m} + \frac{\hbar^2 i\phi&#039;\rho&#039; }{4m}


-\frac{\hbar^2\rho\phi&#039;^2 }{2m} +\frac{\hbar^2\rho&#039;^22\rho - \hbar^2\rho\rho&#039;^2}{8m\rho}+ V\rho + i\left(\frac{\hbar^2\rho \phi&#039;&#039;}{2m} + \frac{\phi&#039;\rho&#039;\hbar^2}{4m} + \frac{\hbar^2 \phi&#039;\rho&#039; }{4m} \right)

Does this look okay?
 
  • #48
Absolutely okay. Go on, you're almost there.
 
  • #49
So now I have to take the imaginary part. Would that be:

i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi&#039;&#039;}{2m} + \frac{\phi&#039;&#039;\rho&#039;&#039;\hbar^2}{4m} + \frac{\hbar^2 \phi&#039;&#039;\rho&#039;&#039;}{4m} \right)
 
  • #50
Quite correct.
 
  • #51
So now I need to compare this:

i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi&#039;&#039;}{2m} + \frac{\phi&#039;\rho&#039;&#039;\hbar^2}{4m} + \frac{\hbar^2 \phi&#039;&#039;\rho&#039;&#039;}{4m} \right)

to:

-\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi&#039;&#039;(x,t) + \frac{\hbar}{m}\rho&#039;(x,t)\phi&#039;(x,t)

Well is we

\frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi&#039;&#039;}{m} + \frac{\phi&#039;\rho&#039;&#039;\hbar}{2m} + \frac{\hbar \phi&#039;&#039;\rho&#039;&#039;}{2m}

They don't seem to similar...?
 
  • #52
Oh. Your previous expression was actually incorrect. The last 2 terms in the rhs should have contained single derivatives of both rho and phi, and not double derivativs (compare with the expression prior to that).
 
  • #53
\frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi&#039;&#039;}{m} + \frac{\phi&#039;\rho&#039;\hbar}{2m} + \frac{\hbar \phi&#039;\rho&#039;}{2m}

so,

\frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi&#039;&#039;}{m} + \frac{\phi&#039;\rho&#039;\hbar}{m}

Now this does look more similar...
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K
Replies
3
Views
2K
Replies
5
Views
2K