TFM
- 1,016
- 0
So now I need to compare this:
i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right)
to:
-\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi''(x,t) + \frac{\hbar}{m}\rho'(x,t)\phi'(x,t)
Well is we
\frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho''\hbar}{2m} + \frac{\hbar \phi''\rho''}{2m}
They don't seem to similar...?
i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right)
to:
-\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi''(x,t) + \frac{\hbar}{m}\rho'(x,t)\phi'(x,t)
Well is we
\frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho''\hbar}{2m} + \frac{\hbar \phi''\rho''}{2m}
They don't seem to similar...?