Help with Quantum Mechanics and Continuity Equation

  • #36
no, the fourth term, not the third one.
 
  • #37
[tex] hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho
[/tex]

?
 
  • #38
perfectly alright !
 
  • #39
Okay so:

[tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex]

Okay, so what should I do now?
 
  • #40
What does the question ask you to do?
 
  • #41
Well, it asks you to split the function up into imaginary and real parts. Have we sorted this out enough to do this now?
 
  • #42
Yup. Go ahead and split it.
 
  • #43
Okay, so:

[tex] \hbar\left(-\rho \frac{\partial \phi}{\partial t} + i\frac{1}{2}\frac{\partial \rho}{\partial t}\right) = \frac{\hbar^2}{2m} \left(\rho(-\phi'^2 + i\phi'') + \frac{i\phi'\rho'}{2} + \left( \frac{\rho'^22\rho - \rho\rho'^2}{4\rho} \right) + \frac{1}{2} i\phi'\rho'\right) + V\rho [/tex]

Multiply out brackets:

[tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} =
\frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex]

So should I just out the parts with an i on one side, and the real parts on the other side of the equals sign (ie i f(x) = g(x))?
 
  • #44
No. If you have a complex equation of the form

f+ ig = p +is where f,g,p,s are real, it follows that f=p and g=s. Here you have to equate the coefficients of the number i on both sides.
 
  • #45
Okay, so:

[tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex]

So if we start on the left side:

[tex] -\hbar\rho \frac{\partial \phi}{\partial t} + \hbar i\frac{1}{2}\frac{\partial \rho}{\partial t} [/tex]

We have:

[tex] -\hbar\rho \frac{\partial \phi}{\partial t} + i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) [/tex]

Does this look okay?
 
  • #46
Yes. go on.
 
  • #47
Okay, now for the right side:

[tex] \frac{\hbar^2}{2m}\rho(-\phi'^2 + i\phi'') + \frac{\hbar^2}{2m}\frac{i\phi'\rho'}{2} + \frac{\hbar^2}{2m}\frac{\rho'^22\rho - \rho\rho'^2}{4\rho} + \frac{\hbar^2}{2m}\frac{1}{2} i\phi'\rho' + V\rho [/tex]

[tex] -\frac{\hbar^2\rho\phi'^2 }{2m} + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho} + \frac{\hbar^2 i\phi'\rho' }{4m}+ V\rho [/tex]

Thus:

[tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + \frac{\hbar^2\rho i\phi''}{2m} + \frac{i\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 i\phi'\rho' }{4m} [/tex]


[tex] -\frac{\hbar^2\rho\phi'^2 }{2m} +\frac{\hbar^2\rho'^22\rho - \hbar^2\rho\rho'^2}{8m\rho}+ V\rho + i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho'\hbar^2}{4m} + \frac{\hbar^2 \phi'\rho' }{4m} \right) [/tex]

Does this look okay?
 
  • #48
Absolutely okay. Go on, you're almost there.
 
  • #49
So now I have to take the imaginary part. Would that be:

[tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi''\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex]
 
  • #50
Quite correct.
 
  • #51
So now I need to compare this:

[tex] i\left(\frac{\hbar}{2}\frac{\partial \rho}{\partial t}\right) = i\left(\frac{\hbar^2\rho \phi''}{2m} + \frac{\phi'\rho''\hbar^2}{4m} + \frac{\hbar^2 \phi''\rho''}{4m} \right) [/tex]

to:

[tex] -\frac{\partial}{\partial t}\rho(x,t) = \frac{\hbar}{m}\rho(x,t)\phi''(x,t) + \frac{\hbar}{m}\rho'(x,t)\phi'(x,t) [/tex]

Well is we

[tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho''\hbar}{2m} + \frac{\hbar \phi''\rho''}{2m} [/tex]

They don't seem to similar...?
 
  • #52
Oh. Your previous expression was actually incorrect. The last 2 terms in the rhs should have contained single derivatives of both rho and phi, and not double derivativs (compare with the expression prior to that).
 
  • #53
[tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{2m} + \frac{\hbar \phi'\rho'}{2m} [/tex]

so,

[tex] \frac{\partial \rho}{\partial t} = \frac{\hbar\rho \phi''}{m} + \frac{\phi'\rho'\hbar}{m} [/tex]

Now this does look more similar...
 

Suggested for: Help with Quantum Mechanics and Continuity Equation

Replies
1
Views
266
Replies
6
Views
741
Replies
1
Views
522
Replies
4
Views
699
Replies
9
Views
819
Replies
12
Views
720
Replies
22
Views
1K
Replies
3
Views
710
Replies
8
Views
730
Back
Top