chiro said:Ito's lemma could be considered as more or less a 'substitution' where the brownian motion is modeled using a standard convention (i.e. B(t+h) - B(t) ~ N(B(t),h) if i recall correctly). If this is the case with your Weiner process then you can use the substitution.
omega_squared said:Hi guys,
It's been a while since high school, and now I'm faced with a problem I need to solve in a few days (attached). Would someone please help me through that? I would really appreciate support.
kai_sikorski said:Not really sure what you mean by this, but Ito's lemma is the stochastic calculus counterpart of the chain rule. Also B(t+h) - B(t) ~ N(B(t),h) doesn't really make sense. Think you meant N(0,h). There is no question about how the Weiner process is modeled though. Weiner process and Brownian motion are the same exact thing and increments over non overlapping time intervals being independent gaussian variables with variance given by the interval length is part of the definition.
chiro said:You have to remember that Ito's lemma is specific for Weiner processes and not for general distributions: you can't just use things like that for general distributions.
kai_sikorski said:Well Ito's lemma is often written out in it's simplest form which only applies to the Weiner process, but there is a more general formula for any X that is a semimartigale. The formula will include a quadratic covariation term [X,X]. For the Weiner process d[W,W]=dt.
kai_sikorski said:In your class has the distribution for the P already been derived, and now its a question of using this to get the distribution of Pρ? If not I must confess that I don't see a way to derive the distribution for Pρ without solving the SDE or the Fokker-Planck equation for P, and that doesn't seem consistent with the question saying it can be done in a straightforward manner.