kevin3295
- 5
- 1
Homework Statement
ln(1-X), |x|<1
Homework Equations
Could someone verify if it was developed correctly?
The Attempt at a Solution
<br /> ln(1-x) = \sum_{n=0}^\infty \left (a_nx^n\right )<br />
<br /> 1+a+a^2+a^3+a^4+a^5+a^6... = 1/(1-a)<br />
<br /> a=x<br />
<br /> 1+x+x^2+x^3+x^4+x^5+x^6... = 1/(1-x)<br />
<br /> ∫1+x+x^2+x^3+x^4+x^5+x^6...dx = ∫1/(1-x) dx<br />
<br /> x+(x^2)/2+(x^3)/3+(x^4)/4+(x^5)/5+(x^6)/6... = - ln(x-1)<br />
<br /> ln(1-x) = - \sum_{n=1}^\infty \left (x^n / n \right )<br />
Thanks for your time
Last edited: