Help with Taylor, ln(1-X), |x|<1

  • Thread starter Thread starter kevin3295
  • Start date Start date
  • Tags Tags
    Taylor
kevin3295
Messages
5
Reaction score
1

Homework Statement


ln(1-X), |x|<1

Homework Equations


Could someone verify if it was developed correctly?

The Attempt at a Solution


<br /> ln(1-x) = \sum_{n=0}^\infty \left (a_nx^n\right )<br />
<br /> 1+a+a^2+a^3+a^4+a^5+a^6... = 1/(1-a)<br />
<br /> a=x<br />
<br /> 1+x+x^2+x^3+x^4+x^5+x^6... = 1/(1-x)<br />
<br /> ∫1+x+x^2+x^3+x^4+x^5+x^6...dx = ∫1/(1-x) dx<br />
<br /> x+(x^2)/2+(x^3)/3+(x^4)/4+(x^5)/5+(x^6)/6... = - ln(x-1)<br />
<br /> ln(1-x) = - \sum_{n=1}^\infty \left (x^n / n \right )<br />

Thanks for your time
 
Last edited:
Physics news on Phys.org
kevin3295 said:
x+(x2)/2+(x3)/3+(x4)/4+(x5)/5+(x6)/6...=ln(x−1)
Hi Keven:

Two issues. One is about your notation of the integrals. There should be a dx.
More important, you have a problem at the quoted step. Think again about
∫1/(1-x)dx = ln(x-1).​
What is the value of ln(x-1) when |x|<1?

Hope this helps.

Regards,
Buzz
 
@Buzz Bloom I made the corrections, thank you
 
  • Like
Likes Buzz Bloom
Hi kevin:

Thank you for your thanks.

You still have a problem with -ln(x-1). Think about the value for |x|<1.

Regards,
Buzz
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top