First,
If A is the matrix and \lambda the eigenvector, then A \vec x = \lambda \vec x for some vector x. Note these facts.
<br />
\begin{align*}<br />
A^n \lambda & = A^{(n-1)} (A \vec x) \\<br />
& = A^{(n-2)} A (\lambda \vec x)\\<br />
& = \hdots \\<br />
& = \lambda^n \vec x<br />
\end{align*} <br />
so \lambda^n is an eigenvalue of A^n, with the same eigenvector
Next, if c is any constant, then
<br />
(cA^n) \vec x = c\left(A^n \vec x\right) = c \lambda^n \vec x<br />
so c\lambda^n is an eigenvalue of cA^n
Finally, if a, b are constants, and m, n are integers, consider the
two-term polynomial p(s) = as^m + bs^n. The polynomial p(A) is<br />
<br />
&lt;br /&gt;
p(A) = a A^m + bA^n&lt;br /&gt;<br />
<br />
which is a matrix the same size as A. The product p(A) \vec x is<br />
<br />
&lt;br /&gt;
\begin{align*}&lt;br /&gt;
(a A^m + b A^n) \vec x &amp;amp; = (a A^m) \vec x + (b A^n) \vec x \\&lt;br /&gt;
&amp;amp; = \left(a \lambda^m\right) \vec x + \left(b \lambda^n\right) \vec x\\&lt;br /&gt;
&amp;amp; = \left(a \lambda^m + b \lambda^n \right) \, \vec x \\&lt;br /&gt;
&amp;amp; = p(\lambda) \, \vec x&lt;br /&gt;
\end{align*}&lt;br /&gt;<br />
<br />
That case does not have a constant term in the polynomial. If you have<br />
&lt;br /&gt;
p(s) = as^m + bs^n + d&lt;br /&gt;<br />
<br />
where d is a constant, the appropriate modification is<br />
<br />
&lt;br /&gt;
p(A) = aA^m + bA^n + d I_n&lt;br /&gt;<br />
<br />
where I_n is the identity matrix the same size as A. Again, it is easy to show that<br />
<br />
&lt;br /&gt;
\begin{align*}&lt;br /&gt;
p(A) \, \vec x &amp;amp; = \left(a A^m + b A^n + dI_n\right) \, \vec x\\&lt;br /&gt;
&amp;amp; = \left(a \lambda^m + b \lambda^n + d\lambda\right) \, \vec x\\&lt;br /&gt;
&amp;amp; = p(\lambda) \, \vec x&lt;br /&gt;
\end{align*}&lt;br /&gt;<br />
<br />
so again p(\lambda) is an eigenvalue of p(A).<br />
<br />
The case for a general polynomial requires a little more notation but the steps are the same.<br />
<br />
The idea: if A is the matrix for a linear operator, so is p(A) for<br />
any polynomial p, and the eigenvalues behave ``as we expect them to&#039;&#039;.