Air
- 202
- 0
1. Homework Statement :
using the substitution u=3x+4, work out:
\int 2x \sqrt{3x+4}2. The attempt at a solution:
\int 2x \sqrt{3x+4}
u=3x+4 \rightarrow \mathrm{d}x = \frac{\mathrm{d}u}{3}
\int \left( \frac{u-4}{3} \right)\left(u^{\frac12}\right) \ \frac{\mathrm{d}u}{3}
\frac19 \int u^{\frac32} - 4u^{\frac12} \ \mathrm{d}u
=\frac19 \left[ \frac{2u^{\frac52}}{5} - \frac{8u^{\frac32}}{3}\right] + c
=\frac{2u^{\frac52}}{45} - \frac{8u^{\frac32}}{27}}+c
=\frac{2(3x+4)^{\frac52}}{45} - \frac{8(3x+4)^{\frac32}}{27} + c3. The problem that I am encountering:
I was close to the answer but it is incorrect. The correct answer is:
\frac{4(3x+4)^{\frac52}}{45} - \frac{16(3x+4)^{\frac32}}{27} + c
Where have I gone wrong? Thanks in advance.
using the substitution u=3x+4, work out:
\int 2x \sqrt{3x+4}2. The attempt at a solution:
\int 2x \sqrt{3x+4}
u=3x+4 \rightarrow \mathrm{d}x = \frac{\mathrm{d}u}{3}
\int \left( \frac{u-4}{3} \right)\left(u^{\frac12}\right) \ \frac{\mathrm{d}u}{3}
\frac19 \int u^{\frac32} - 4u^{\frac12} \ \mathrm{d}u
=\frac19 \left[ \frac{2u^{\frac52}}{5} - \frac{8u^{\frac32}}{3}\right] + c
=\frac{2u^{\frac52}}{45} - \frac{8u^{\frac32}}{27}}+c
=\frac{2(3x+4)^{\frac52}}{45} - \frac{8(3x+4)^{\frac32}}{27} + c3. The problem that I am encountering:
I was close to the answer but it is incorrect. The correct answer is:
\frac{4(3x+4)^{\frac52}}{45} - \frac{16(3x+4)^{\frac32}}{27} + c
Where have I gone wrong? Thanks in advance.