Hermitian Adjoint of V & R Vector Spaces Homework

  • Thread starter Thread starter Doradus
  • Start date Start date
  • Tags Tags
    Hermitian
Doradus
Messages
4
Reaction score
0

Homework Statement



Be V the set ##\{f \in \mathbb{R}[X]| deg\,f \leq 2 \}##. This becomes to an euclidic vector space through the
inner product ##\langle f,g\rangle:=\sum_{i=-1}^1f(i)g(i)## .
The same goes for ##\mathbb{R}## with the inner product ##\langle r,s\rangle :=rs\,\,\,##.

a) For ##j:\mathbb{R}\to V,r\mapsto rX##, calculate the hermitian adjoint ##j^*##.

b) Be ##\Phi :V \to \mathbb{R}## the linear map ##\sum_{i=0}^2a_iX^i \mapsto \sum_{i=0}^2a_i \,\,\,##. Calculate the hermitian adjoint ##\Phi^*\,\,\,##.

Homework Equations



The Attempt at a Solution


For a) i have the follwowing solution:

##\langle f,j(s) \rangle_V = \langle j^*(f), s \rangle_{\mathbb{R}}##
##\Rightarrow \sum_{i=-1}^1f(i) \cdot (j(s))(i)=j^*(f) \cdot s##
##\Rightarrow f(-1)\cdot -s+f(0)\cdot 0s+f(1)\cdot s = j^*(f) \cdot s##
##\Rightarrow j^*(f)=f(1)-f(-1)##

Is this solution correct?
For b), i don't find a starting point.
 
Physics news on Phys.org
Can't we approach (b) the same way as (a)?
For (b), the defining equation is
$$\langle\Phi(f),s\rangle=\langle f,\Phi^*(s)\rangle$$
What happens if we expand that using the definitions given?

Your working for (a) looks broadly correct. To check that something has not gone wrong, like a missed sign, plug a polynomial ##f(x)=a_0+a_1x+a_2x^2## into it and see if the equality of the two inner products holds.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top