How Accurate Can an Atwood Machine Measure Gravity?

AI Thread Summary
The discussion focuses on using an Atwood machine to measure local gravity with a target accuracy of 5%. The derived formula for gravity is g = (2L(m1+m2))/((m1-m2)t^2), which relates mass, distance, and time. Participants explore how to express the relationship between the uncertainty in gravity and time, leading to dg/g = (-4L(m1+m2))dt / ((m1-m2)gt^3). To achieve a 1% accuracy in measuring gravity, the required mass m2 would need to increase, highlighting the impact of mass uncertainty on the results. The conversation emphasizes the importance of careful calculations and understanding the relationships between variables in experimental physics.
Johnny0290
Messages
8
Reaction score
0

Homework Statement



Consider the Atwood's machine of Lecture 8. We wish to use this machine to measure our local acceleration of gravity with an accuracy of 5% [i.e. (Delta g)/g = 0.05]. To begin, suppose we let the mass m_1 fall through a distance L.

3.1 Find an expression for the acceleration of gravity, g, in terms of m_1, m_2, L and t.

3.2 Now suppose we are able to measure time with an accuracy of (Delta t) = 0.1 s. Assuming that, for example, (Delta t)/t can be approximated by the differential dt/t, write the relationship between (Delta g)/g and (Delta t)/t. You can do this by starting with the derivative dg/dt determined from the equation in the previous part.

3.3 If L = 3 m and m_1 = 1 kg, determine the value of m_2 required to determine g to 5%. If we want to measure g to 1% would the mass m_2 increase or decrease - why? (On your own, you might want to consider the effect of the uncertainty in the masses of m_1 and m_2 on the determination of g.)

Homework Equations



F=ma
x-x_0=v_o*t+.5*a*t^2

The Attempt at a Solution



3.1
First I summed up the forces on the two masses and solved for the acceleration of the blocks.

I ended up with...
a=g(m1-m2)/(m1+m2)

Then I used x-x_0=v_o*t+.5*a*t^2 and solved for the acceleration.
a=2L/t^2

Combing the two equations and solving for gravity I got...
g=(2L(m1+m2))/((m1-m2)t^2)

3.2

I took the derivative of both sides of the equation with respect to t and got...
dg/dt=(-4L(m1+m2))/((m1-m2)t^3)

My attempt to relate dg/g to dt/t

dg/g=(-4L(m1+m2))dt / ((m1-m2)gt^3)

And that's where I'm stuck. I'm not sure if I did everything right and I can't figure out what I have to plug into do part 3.3

Any help is appreciated. Thank you!
 
Physics news on Phys.org
It seems that you got tangled up in all those symbols. You can make your life simpler if you look at it this way. The expression for g is of the form

g = C t2, where C is a constant.

Now take the derivative and see what you get. BTW, the derivative of t2 does not go as t3.
 
Johnny0290 said:
I took the derivative of both sides of the equation with respect to t and got...
dg/dt=(-4L(m1+m2))/((m1-m2)t^3)

My attempt to relate dg/g to dt/t

dg/g=(-4L(m1+m2))dt / ((m1-m2)gt^3)
Good. Now simplify by plugging your earlier expression for g into the right hand side.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top