How are these two equations the same?

  • Thread starter Thread starter IntegrateMe
  • Start date Start date
IntegrateMe
Messages
214
Reaction score
1
\lim_{n\to\infty}\frac{8^{n-1}}{9^{n}}

and

\frac{1}{9}\lim_{n\to\infty}(\frac{8}{9})^{n}

In particular, why is there a 1/9 beside the limit instead of a 1/8 in the second equation?
 
Last edited:
Physics news on Phys.org
These are not equations, FYI, they are limits, and as limits they are the same.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top