How Can I Analyze Energy Dissipation in a Non-Linear Damping System?

  • Thread starter Thread starter dmitryz
  • Start date Start date
  • Tags Tags
    Damping Impact
dmitryz
Messages
2
Reaction score
0

Homework Statement


vinit = sqrt(2g*h); h = drop distance
vfinal = 0;

xinit = 0;
xfinal = 100mm;

a = g;

Issue: non-linear damping.
M*x'' - b*(x')^2 - k*x = 0;
b = 128*mu*(length fluid travels)*(D^4(piston)/[(D(hydraulic)^4)(orifice opening)]every book I've been reading on vibrations damping says there's no solution for v^2 damping. Currently reading "Influence of Damping in Vibration Isolation" and they give an equivalent linear damping coefficient as:
C(eq) = (D0)/(∏ω(z0)^2); D0 being energy dissipated per cycle, z0 being relative displacement.

Then they go into equivalent damping force being: γ*F; γ= (2/sqrt(∏))*gamma((n+2)/2)/gamma((n+3)/2)...very long story short. Is there anyway to do a stepwise energy dissipation of a mass/spring/damper problem? Can I use something like: initial energy in - energy to compress spring - energy dissipated by damper = 0.

the issue I think is with this is that I don't know how to figure out energy dissipated by a damper whose dependent on v^2...

can I define a function that says: this system was deflected by 0.1mm at this time and Z amount of energy was taken away from the initial impact. W energy was taken up by the spring, and X was taken by the damper. This is how much much energy was left over at the boundary of this iteration...

Im in analysis paralysis at the moment and I think I'm overthinking this...
 
Last edited:
Physics news on Phys.org
Isn't x'' = a = g = constant? So
b(x')^2 + kx = ma?
 
Yes. The thing is figuring out what b value I need for any drop between 25mm and 1200mm. At a height of 1000mm what b do I need to be critically damped? At a height of 400mm what b do I need to be critically damped? and so on. Vibration teacher says that the impact is making this problem very difficult to solve. Because the damping is non-linear and because the area of the orifice is also changing (see fluids orifice measurements) this problem becomes non-uniform area, non-linear damping.

I have the non-uniform area calculations by using the hydraulic diameter: Dh = 4*(area of orifice)/(wetted perimeter). I have the damping coefficient calculations: 128*mu*L*(d(piston)^4)/(d(orifice)^4)...now I don't have the damping coefficient necessary for any given height so that I can get the orifice diameter required at that height.
 
Last edited:
Oops, my initial assumption is incorrect, on reflection (even though you agreed!).

I though the equation would be 1st order but it's not. And I have to cconcede that I wouldn't know how to approach it. What's the background material for this problem? I mean, numerical techniques or whatever? What's the complete statement of the problem?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top