How can I calculate the exponential of a non-diagonal matrix?

Click For Summary
SUMMARY

The discussion focuses on calculating the exponential of a non-diagonal matrix, specifically the Hamiltonian operator H defined as H=-\frac{\hbar\Omega}{2}\sigma_x, where \sigma_x is the Pauli X matrix. The user seeks to derive the state vector \Psi(t) from the expression \Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle to the form involving cosine and sine functions. Key insights include the necessity of using rotation matrices to convert the problem into a diagonal form, as the exponential of a non-diagonal matrix cannot be computed directly using element-wise exponentiation.

PREREQUISITES
  • Understanding of quantum mechanics concepts, particularly state vectors and Hamiltonians.
  • Familiarity with matrix exponentiation and its applications in quantum mechanics.
  • Knowledge of the Pauli matrices, specifically \sigma_x.
  • Basic understanding of rotation matrices and their role in transforming basis states.
NEXT STEPS
  • Learn about the derivation of the matrix exponential for non-diagonal matrices.
  • Study the properties of rotation matrices in quantum mechanics.
  • Explore the relationship between Pauli matrices and quantum state transformations.
  • Investigate the use of the Jordan form for matrix exponentiation in quantum systems.
USEFUL FOR

Quantum physicists, students of quantum mechanics, and anyone involved in quantum computing or theoretical physics who needs to understand matrix exponentiation in the context of non-diagonal Hamiltonians.

maximus123
Messages
48
Reaction score
0
Hello,

I have a problem where I'm given the following

H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
Where

\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
And in general

\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
So

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
The problem is I need to get from here to

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />

I can't work out how to get to this cos and sine matrix. I tried this

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}

Beyond this I cannot see how to get from here to

\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}
Any help would be really appreciated
 
Physics news on Phys.org
There might be more than one way to approach the problem, but I would proceed thus. You can calculate the exponential of a matrix easily if the matrix is diagonal. For
$$
A = \left( \begin{array}{cc} a_1 & 0 \\ 0 & a_2 \end{array} \right)
$$
$$
\exp(A) = \left( \begin{array}{cc} e^{a_1} & 0 \\ 0 & e^{a_2} \end{array} \right)
$$
Can you find the rotation that brings you from the z-basis to the x-basis?
 
Thanks for responding,

So based on what you've said for the exponential of a matrix the expression in my original post would become

<br /> \Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\textrm{exp}\left[\begin{pmatrix}0 &amp; i\frac{\Omega t}{2}\\i\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right]\left|0\right\rangle=\begin{pmatrix}0 &amp; \textrm{exp}\left[i\frac{\Omega t}{2}\right]\\\textrm{exp}\left[i\frac{\Omega t}{2}\right] &amp; 0\end{pmatrix}\left|0\right\rangle\\\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\begin{pmatrix}0 &amp; \textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right)\\\textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right) &amp; 0\end{pmatrix}\left|0\right\rangle<br /> <br />

is that correct? It doesn't seem much closer to the intended end result.

When you asked about the rotation are you referring to the relationships \sigma_y\sigma_z=-i\sigma_x etc.?
 
Last edited:
Calculating the exponential of a matrix by taking the exponential of the elements only works for a diagonal matrix. You can show this by considering the series expansion of the exponential function.

You do not have a diagonal matrix, this is why I said you need to look at the rotation matrix that will bring you from the z basis to the x basis, in which ##\sigma_x## is diagonal.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K