How can I calculate the exponential of a non-diagonal matrix?

Click For Summary

Homework Help Overview

The discussion revolves around calculating the exponential of a non-diagonal matrix, specifically in the context of quantum mechanics. The original poster presents a Hamiltonian expressed in terms of the Pauli matrix σ_x and seeks to find the time evolution of a quantum state using the matrix exponential.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the calculation of the matrix exponential, noting that diagonal matrices allow for straightforward computation. The original poster attempts to apply this concept to a non-diagonal matrix and questions how to derive the sine and cosine terms from the exponential form. Others suggest considering the rotation that relates different bases in quantum mechanics.

Discussion Status

The conversation is ongoing, with participants providing insights into the nature of matrix exponentials and the necessity of transformations for non-diagonal matrices. There is no explicit consensus yet, as various interpretations and approaches are being explored.

Contextual Notes

Participants are discussing the implications of using a non-diagonal matrix for exponential calculations and the potential need for additional transformations or rotations to simplify the problem. The original poster expresses uncertainty about the correctness of their approach and seeks further clarification.

maximus123
Messages
48
Reaction score
0
Hello,

I have a problem where I'm given the following

H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
Where

\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
And in general

\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
So

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
The problem is I need to get from here to

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />

I can't work out how to get to this cos and sine matrix. I tried this

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}

Beyond this I cannot see how to get from here to

\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}
Any help would be really appreciated
 
Physics news on Phys.org
There might be more than one way to approach the problem, but I would proceed thus. You can calculate the exponential of a matrix easily if the matrix is diagonal. For
$$
A = \left( \begin{array}{cc} a_1 & 0 \\ 0 & a_2 \end{array} \right)
$$
$$
\exp(A) = \left( \begin{array}{cc} e^{a_1} & 0 \\ 0 & e^{a_2} \end{array} \right)
$$
Can you find the rotation that brings you from the z-basis to the x-basis?
 
Thanks for responding,

So based on what you've said for the exponential of a matrix the expression in my original post would become

<br /> \Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\textrm{exp}\left[\begin{pmatrix}0 &amp; i\frac{\Omega t}{2}\\i\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right]\left|0\right\rangle=\begin{pmatrix}0 &amp; \textrm{exp}\left[i\frac{\Omega t}{2}\right]\\\textrm{exp}\left[i\frac{\Omega t}{2}\right] &amp; 0\end{pmatrix}\left|0\right\rangle\\\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\begin{pmatrix}0 &amp; \textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right)\\\textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right) &amp; 0\end{pmatrix}\left|0\right\rangle<br /> <br />

is that correct? It doesn't seem much closer to the intended end result.

When you asked about the rotation are you referring to the relationships \sigma_y\sigma_z=-i\sigma_x etc.?
 
Last edited:
Calculating the exponential of a matrix by taking the exponential of the elements only works for a diagonal matrix. You can show this by considering the series expansion of the exponential function.

You do not have a diagonal matrix, this is why I said you need to look at the rotation matrix that will bring you from the z basis to the x basis, in which ##\sigma_x## is diagonal.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K