How can I calculate the exponential of a non-diagonal matrix?

maximus123
Messages
48
Reaction score
0
Hello,

I have a problem where I'm given the following

H=-\frac{\hbar\Omega}{2}\sigma_x\quad\quad\quad\textrm{and}\quad\quad\quad\Psi(0)=\left|0\right\rangle\quad
Where

\sigma_x=\begin{pmatrix}0 & 1\\1&0\end{pmatrix}\quad\quad\quad\textrm{and}\quad\quad\quad\left|0\right\rangle=\begin{pmatrix}1\\0\end{pmatrix}
And in general

\Psi(t)=\textrm{exp}\left[-i\frac{H}{\hbar}t\right]\Psi(0)
So

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle
The problem is I need to get from here to

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}\\\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,=\begin{pmatrix}cos(\Omega t/2)\\isin(\Omega t/2)\end{pmatrix}<br />

I can't work out how to get to this cos and sine matrix. I tried this

\Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\left\lbrace\textrm{cos}\left(\frac{\Omega t}{2}\sigma_x\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\sigma_x\right)\right\rbrace\left|0\right\rangle\\\\<br /> \quad\quad\quad\quad\quad\quad\quad\quad\quad=\left\lbrace\textrm{cos}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}+i\textrm{sin}\begin{pmatrix}0 &amp; \frac{\Omega t}{2}\\\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right\rbrace\begin{pmatrix}1\\0\end{pmatrix}

Beyond this I cannot see how to get from here to

\begin{pmatrix}\textrm{cos}(\Omega t/2)\,\,\,&amp;i\textrm{sin}(\Omega t/2)\\i\textrm{sin}(\Omega t/2)\,\,\,&amp;\textrm{cos}(\Omega t/2)\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}
Any help would be really appreciated
 
Physics news on Phys.org
There might be more than one way to approach the problem, but I would proceed thus. You can calculate the exponential of a matrix easily if the matrix is diagonal. For
$$
A = \left( \begin{array}{cc} a_1 & 0 \\ 0 & a_2 \end{array} \right)
$$
$$
\exp(A) = \left( \begin{array}{cc} e^{a_1} & 0 \\ 0 & e^{a_2} \end{array} \right)
$$
Can you find the rotation that brings you from the z-basis to the x-basis?
 
Thanks for responding,

So based on what you've said for the exponential of a matrix the expression in my original post would become

<br /> \Psi(t)=\textrm{exp}\left[i\frac{\Omega t}{2}\sigma_x\right]\left|0\right\rangle=\textrm{exp}\left[\begin{pmatrix}0 &amp; i\frac{\Omega t}{2}\\i\frac{\Omega t}{2} &amp; 0\end{pmatrix}\right]\left|0\right\rangle=\begin{pmatrix}0 &amp; \textrm{exp}\left[i\frac{\Omega t}{2}\right]\\\textrm{exp}\left[i\frac{\Omega t}{2}\right] &amp; 0\end{pmatrix}\left|0\right\rangle\\\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\begin{pmatrix}0 &amp; \textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right)\\\textrm{cos}\left(\frac{\Omega t}{2}\right)+i\textrm{sin}\left(\frac{\Omega t}{2}\right) &amp; 0\end{pmatrix}\left|0\right\rangle<br /> <br />

is that correct? It doesn't seem much closer to the intended end result.

When you asked about the rotation are you referring to the relationships \sigma_y\sigma_z=-i\sigma_x etc.?
 
Last edited:
Calculating the exponential of a matrix by taking the exponential of the elements only works for a diagonal matrix. You can show this by considering the series expansion of the exponential function.

You do not have a diagonal matrix, this is why I said you need to look at the rotation matrix that will bring you from the z basis to the x basis, in which ##\sigma_x## is diagonal.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top