MHB How can I divide a polynomial by (x+k) using synthetic division?

Click For Summary
To divide the polynomial x^3 + (1-k^2)x + k by (x+k) using synthetic division, the process involves setting up the synthetic division with -k as the divisor. The resulting synthetic division yields coefficients that simplify to x^2 - kx + 1. This shows that the polynomial can be expressed as x^3 + (1-k^2)x + k = (x+k)(x^2 - kx + 1). The method effectively demonstrates how to perform synthetic division with a linear binomial. Understanding this technique is crucial for polynomial division in algebra.
markosheehan
Messages
133
Reaction score
0
i am trying to divide x^3+(1-k^2)x+k by (x+k) but i can't do this can you show me how to.
 
Mathematics news on Phys.org
I would use synthetic division here:

$$\begin{array}{c|rr}& 1 & 0 & 1-k^2 & k \\ -k & & -k & k^2 & -k \\ \hline & 1 & -k & 1 & 0 \end{array}$$

Thus, we may state:

$$x^3+(1-k^2)x+k=(x+k)(x^2-kx+1)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K