MHB How can I find out if this matrix A's columns are linearly independent?

shamieh
Messages
538
Reaction score
0
How can I find out if this matrix A's columns are linearly independent?

$\begin{bmatrix}1&0\\0&0\end{bmatrix}$

I see here that $x_1 = 0$ and similarly $x_2 = 0$ does this mean that this matrix A's columns are therefore linearly dependent?

Also this is a projection onto the $x_1$ axis so is it also safe to say that this is also one-to-one since it has only the trivial solution of $0$?
 
Physics news on Phys.org
shamieh said:
How can I find out if this matrix A's columns are linearly independent?

$\begin{bmatrix}1&0\\0&0\end{bmatrix}$

I see here that $x_1 = 0$ and similarly $x_2 = 0$ does this mean that this matrix A's columns are therefore linearly dependent?

Also this is a projection onto the $x_1$ axis so is it also safe to say that this is also one-to-one since it has only the trivial solution of $0$?

Hi shamieh, The two columns of the matrix are $$\begin{pmatrix}1\\0\end{pmatrix}$$ and $$\begin{pmatrix}0\\0\end{pmatrix}$$. To check the linear independence of these two vectors take $$\alpha$$ and $$\beta$$ such that, ​$\alpha\begin{pmatrix}1\\0\end{pmatrix}+\beta\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$.Then, $$\alpha=0$$ and $$\beta\in\Re$$ is arbitrary. Thus these two vectors are linearly dependent. Another method of finding the linear independence of two vectors is to calculate the determinant of the matrix formed by them. This is illustrated in the following Wikipedia article. https://en.wikipedia.org/wiki/Linear_independence#Alternative_method_using_determinants
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top