How can I find the limit of the sequence e^-n?

  • Thread starter Thread starter Lance WIlliam
  • Start date Start date
  • Tags Tags
    Limit Sequence
Lance WIlliam
Messages
47
Reaction score
0
I believe this sequence converges but how do I Find the Limit of "e^-n"?
 
Physics news on Phys.org
e^{-n} = \frac{1}{e^n} What happens to the denominator when n approaches infinity?
 
It goes to ZERO!
well 1/inifinity is Zero
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top