Semo727
- 26
- 0
Hello!
I would like to count (see the way how to count) this integral
\int_0^v \frac{1}{(1-v^2)^{3/2}} \,dv
It should be
\frac{v}{\sqrt{1-v^2}}.
I have managed to count it (I have just derived the result, and followed steps in reversed order),
but this method was a little bit clumsy, I think.
It looked like this:
\int\frac{1}{(1-v^2)^{3/2}} \,dv=\int\frac{1-v^2+v^2}{(1-v^2)^{3/2}} \,dv=\int\left[\frac{1}{\sqrt{1-v^2}}+\frac{v^2}{(1-v^2)^{3/2}}\right]\,dv=
=\frac{v}{\sqrt{1-v^2}}\ +\ C\ -\ \int\frac{v^2}{(1-v^2)^{3/2}}\,dv\ +\ \int\frac{v^2}{(1-v^2)^{3/2}}\,dv=\frac{v}{\sqrt{1-v^2}}\ +\ C
so
\int_0^v \frac{1}{(1-v^2)^{3/2}} \,dv=\frac{v}{\sqrt{1-v^2}}\ +\ C\ -\ C\ =\frac{v}{\sqrt{1-v^2}}
I would really appreciate if you write here some more elegant way (if exists) to count that integral.
I need to integrate it to get relativistic mass m_v=\frac{m_0}{\sqrt{1-v^2/c^2}}.
I would like to count (see the way how to count) this integral
\int_0^v \frac{1}{(1-v^2)^{3/2}} \,dv
It should be
\frac{v}{\sqrt{1-v^2}}.
I have managed to count it (I have just derived the result, and followed steps in reversed order),
but this method was a little bit clumsy, I think.
It looked like this:
\int\frac{1}{(1-v^2)^{3/2}} \,dv=\int\frac{1-v^2+v^2}{(1-v^2)^{3/2}} \,dv=\int\left[\frac{1}{\sqrt{1-v^2}}+\frac{v^2}{(1-v^2)^{3/2}}\right]\,dv=
=\frac{v}{\sqrt{1-v^2}}\ +\ C\ -\ \int\frac{v^2}{(1-v^2)^{3/2}}\,dv\ +\ \int\frac{v^2}{(1-v^2)^{3/2}}\,dv=\frac{v}{\sqrt{1-v^2}}\ +\ C
so
\int_0^v \frac{1}{(1-v^2)^{3/2}} \,dv=\frac{v}{\sqrt{1-v^2}}\ +\ C\ -\ C\ =\frac{v}{\sqrt{1-v^2}}
I would really appreciate if you write here some more elegant way (if exists) to count that integral.
I need to integrate it to get relativistic mass m_v=\frac{m_0}{\sqrt{1-v^2/c^2}}.
Last edited: