How can I obtain the convolution output for an input function and operator?

AI Thread Summary
The discussion revolves around understanding the convolution output from an input function and a convolution operator as presented in a textbook. The user struggles to reconcile the provided example's output with their calculations, particularly facing issues with negative indexing when applying the convolution formula. They clarify that the convolution process involves reversing the operator and applying it as a sliding filter over the input function. After further analysis, they realize that adjusting the summation notation resolves their confusion, leading to a correct interpretation of the output. Ultimately, they conclude that the discrepancy may be an error in the textbook.
AlecYates
Messages
12
Reaction score
0
Hey,

I've begun going through a book called "An introduction to geophysical exploration" by Phillip Kearey and Michael Brooks and I've come across a problem I can't for the life of me see how they got their answer.

Essentially, given an input function gi (i = 1,2... m), and a convolution operator fj (j = 1,2 ...n) the convolution output is given by:

yk = \Sigmagifk - i (k = 1,2 ... m + n - 1)

with (Sigma sum starting at i = 1 and going up to m).

Their example is with an input of g(2,0,1) and operator of f(4,3,2,1) the output is y(8,6,8,5,2,1).

Not only can I not see how this is obtained, but based on the function if I'm trying to find y1 I end up with negative index of fj as I perform fk - i as i increases from 1 to 3 with the largest index being f0 (from f1 - 1 where k = 1 and i = 1). How can this be correct?

Any help would be appreciated.
 
Mathematics news on Phys.org
Just realized this should be in the homework/CW area (by the rules listed in the pinned thread). Reposting.
 
AlecYates said:
Their example is with an input of g(2,0,1) and operator of f(4,3,2,1) the output is y(8,6,8,5,2,1).

Not only can I not see how this is obtained, but based on the function if I'm trying to find y1 I end up with negative index of fj as I perform fk - i as i increases from 1 to 3 with the largest index being f0 (from f1 - 1 where k = 1 and i = 1). How can this be correct?
The convolution g*f basically applies a "sliding filter" to g, where the filter is just a reversed f (or f by a reversed g; it's symmetric). In this case f(-n) = (1,2,3,4), so the terms in g*f are just

$$
\begin{matrix}
g & & & & 2 & 0 & 1 \\
f(-n) & 1 & 2 & 3 & 4 \\
g*f & & & & 8
\end{matrix}
\qquad \ldots \qquad
\begin{matrix}
& 2 & 0 & 1 \\
1 & 2 & 3 & 4 \\
& 4 & 0 & & = 4
\end{matrix}
\qquad \ldots \qquad
\begin{matrix}
& 2 & 0 & 1 \\
& & & 1 & 2 & 3 & 4 \\
& & & 1
\end{matrix}
$$

At the endpoints you see that f(-n) is allowed to "fall off the ends," so you get as many outputs as both inputs combined, less 1. This is just because f and g have to overlap by at least one term to make an output.

There are some nice visual demonstrations at the Wikipedia page for Convolution.
 
  • Like
Likes 1 person
Yeah they have a demonstration of this on the next page of the textbook, which is easy enough to follow (although it didn't mention anything about the reversed filter which is helpful, I had wondered if it was a mistake originally).

It's just frustrating I can't get the same result using the Sigma Summation given.

Using the sigma summation I get y(0,8,6,8,5,2) as if I regard any impossible index's i.e. f(n) where n < 1 as 0, y1 can only ever be 0 as opposed to 8. So my solution is shifted to the right by one place from the actual solution.
 
Well, following your notation it seems to me that the summation should read

$$
y_k = \sum_{i} g_i \, f_{k-i+1} .
$$
That gives
$$
\begin{align}
y_1 &= g_1 \, f_1 + 0 = (2)(4) = 8 \\
& \vdots \\
y_{m+n-1} &= y_6 = 0 + g_3 \, f_{6-3+1} = (1)(1) = 1,
\end{align}
$$
which looks correct.
 
Yup seems to be. Guess I'll assume it an error within the text and move on. Cheers
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top