How can I use conservation of momentum to rescue my injured partner in space?

  • Thread starter Thread starter mkeaton88
  • Start date Start date
  • Tags Tags
    Biomechanics Space
AI Thread Summary
To rescue an injured partner in space using conservation of momentum, an astronaut can push off a 20kg toolbox to change their velocity and drift toward the partner, who is stationary between them and the spaceship. This action creates an inelastic collision when they reach the partner, allowing both to move back toward the spaceship together. The astronaut should maintain a position that maximizes control during the maneuver, although spreading limbs may not significantly affect momentum in the vacuum of space. Calculating the time to return to the spaceship involves using the impulse produced and the distance to the ship. Proper planning and understanding of momentum principles are crucial for successful rescue in such scenarios.
mkeaton88
Messages
4
Reaction score
0
1. you and your partner are astronauts wearing 10kg space suits, you are drifting away from the spaceship 0.1m/s and your partner is stationary directly between you and the spaceship which is 100m away from your partner. The ship cannot move and no ones aboard to get you. You are fine but your partner is badly injured and unable to move! Oh and your holding a 20kg tool box.

-->I need to get my injured partner and I to the space ship, I need to explain using conservation of linear and angular momentum how I am going to be able to do this...I was thinking pushing off the toolbox in a way? It would prevent me from going back 0.1m/s for sure and possibly get me to my partner, perhaps position myself in somersaulting postion?

Not too sure!
 
Physics news on Phys.org
Oh man, now that's intense! Not sure if I would think of physics in a moment like this, but yeah, basically if you push off the 20Kg tool box in the direction where you are moving, you would change your velocity direction and now be drifted toward the spaceship. In the way back to the spaceship you would just collide with your partner (whom you would have to hold closely so to produce an 'inelastic collision') and finally make your way back to the spaceship (that last part with less velocity due to the change of mass).
 
Should I turn my body into a certain position after take off? like head first perpendicular to my partner ahead? Also, near the end of the question it mentions that I need to have reasonable degree of control..so would I have to get me and my partner to spread out our arms and legs to increase moment of inertia...although I don't think that would make much of a difference in space..
 
Oh, I don't think either that would make any difference, I mean it's not like there is any air friction. Therefore there is no need really to do anything, apart of holding your partner together so that the collision is inelastic and so on. Moreover your partner is injured, don't think he would agree to do some somersaulting lol.

Anyway, I think that happened several times, sadly. I remember once, the news broadcast that such an incident occurred to an USSR astronaut. And nobody was able to rescue him, he just kept going to the same direction ad eternum... However nowadays I'm pretty sure they are not allowed to go outside without that kind of long-robotic-arm attached to the spaceship.
 
Last edited:
Not only that, but I am pretty sure they need to have those rockets attached to their backs in order to maneuver in open space in the first place right?

Also, which sort of equation would help me find out the answer to the question "once you catch your partner, calculate how long it will take you to get back to the space station if you can produce an impulse of 200 Newton seconds using a pushing action"
...So considering I am just head in a linear motion towards the shuttle would I just use L=mv...then once I find out the velocity get the 'seconds'?
 
Yeah, as long as you know how many meters there are from your partner to the space shuttle, that should do it.
 
Awesome, thanks Redsummers!
 
You're welcome. And now you know, if you ever go to outer space, be sure to bring a tool box with you!
 
Back
Top