How Can I Use Stokes' Theorem to Show Integral of fgrad(g)*dr=0?

JaysFan31

Homework Statement


Let S be a simple parametrically defined surface with boundary C as in Stokes' Theorem. Let f and g be two continuously differentiable scalar fields defined on S. Let n be a choice of unit normal on S. If grad(f) is perpendicular to grad(g) x n everywhere on S, show that integral of fgrad(g)*dr=0.
Note: x is cross product and * is dot product


Homework Equations


Stokes' Theorem:
integral of F*dr=integral of curlF*ndS


The Attempt at a Solution


I'm pretty confused on this one.
First off, what does the perpendicular part mean? What does it tell me? Doesn't it just tell me that the cross product exists everywhere? How does this information help me solve the problem and show that the integration equals zero?
 
Physics news on Phys.org
You do not know what "perpendicular" means? It means here exactly what it means in elementary geometry- that the two vectors are at right angles to one another. What you are really asking is "What does it tell me". No, it does not tell you that the cross product exists everywhere! As long as the two vectors exists, their cross product exists. What it tells you is much simpler than that: that the dot product of the two vectors is 0.
 
To solve this (and the last post) all you need are some vector identities. Here they are at no extra charge. f is a scalar, a,b,c are vectors. (. is dot, * is scalar multiply).

curl(grad(f))=0
a.(bxc)=b.(cxa)=c.(axb)
curl(f*a)=grad(f)xa+f*curl(a)

I'm not charging for this service because I'm sure you already had them.
 
Ok. So I get that
grad(f) . (grad(g) x n)=0 where x is cross product and . is dot product since the vectors are perpendicular.

Using the second identity shown,

n . (grad(f) x grad(g))=0.
This equals (grad(f) x grad(g)) . n=0.

How do I show however that (grad(f) x grad(g))=fgrad(g) to make it work?
 
They AREN'T equal. Use one of your free identities to compute curl(f grad(g)). The point to Stokes is integrating curl(F) over the interior and integrating F over the boundary. curl(F) and F are TWO DIFFERENT FIELDS.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top