Lajka
- 68
- 0
Hi,
Quick question here: I know that C-S inequality in general states that
|<x,y>| \leq \sqrt{<x,x>} \cdot \sqrt{<y,y>}
and, in the case of L^2(a,b)functions (or L^2(R) functions, for that matter), this translates to
|\int^{b}_{a}f(x)g(x)dx| \leq \sqrt{\int^{b}_{a}|f(x)|^2dx} \cdot \sqrt{\int^{b}_{a}|g(x)|^2dx}
What I don't understand is, in a book I read, it says
||fg||_1 \leq ||f||_2 \cdot ||g||_2
which means
\int^{b}_{a}|f(x)g(x)|dx \leq \sqrt{\int^{b}_{a}|f(x)|^2dx} \cdot \sqrt{\int^{b}_{a}|g(x)|^2dx}
I suppose that both of these correct, but I don't how to justify the transition from |\int^{b}_{a}f(x)g(x)dx| to \int^{b}_{a}|f(x)g(x)|dx.
I suppose I should use the fact that
|\int^{b}_{a}f(x)g(x)dx| \leq \int^{b}_{a}|f(x)g(x)|dx
but that can't be sufficient, e.g., if 2<5 and 2<17 doesn't mean that 5<17. Any thoughts?
Thanks.
EDIT: I'm just going to get greedy and pop-in another small question from the book I use
http://i.imgur.com/l4jD0.png
Can anybody explain to me why is this cleary true? (I hate it when they say it like that, I feel dumb)
Quick question here: I know that C-S inequality in general states that
|<x,y>| \leq \sqrt{<x,x>} \cdot \sqrt{<y,y>}
and, in the case of L^2(a,b)functions (or L^2(R) functions, for that matter), this translates to
|\int^{b}_{a}f(x)g(x)dx| \leq \sqrt{\int^{b}_{a}|f(x)|^2dx} \cdot \sqrt{\int^{b}_{a}|g(x)|^2dx}
What I don't understand is, in a book I read, it says
||fg||_1 \leq ||f||_2 \cdot ||g||_2
which means
\int^{b}_{a}|f(x)g(x)|dx \leq \sqrt{\int^{b}_{a}|f(x)|^2dx} \cdot \sqrt{\int^{b}_{a}|g(x)|^2dx}
I suppose that both of these correct, but I don't how to justify the transition from |\int^{b}_{a}f(x)g(x)dx| to \int^{b}_{a}|f(x)g(x)|dx.
I suppose I should use the fact that
|\int^{b}_{a}f(x)g(x)dx| \leq \int^{b}_{a}|f(x)g(x)|dx
but that can't be sufficient, e.g., if 2<5 and 2<17 doesn't mean that 5<17. Any thoughts?
Thanks.
EDIT: I'm just going to get greedy and pop-in another small question from the book I use
http://i.imgur.com/l4jD0.png
Can anybody explain to me why is this cleary true? (I hate it when they say it like that, I feel dumb)
Last edited: