How can we use interpolation to create two functions?

  • Thread starter Thread starter haya
  • Start date Start date
  • Tags Tags
    Functions
haya
Messages
15
Reaction score
0

Homework Statement



[PLAIN]http://im2.gulfup.com/2011-04-01/1301652393881.gif

Homework Equations




how can we do into 2 functions

The Attempt at a Solution



[PLAIN]http://im2.gulfup.com/2011-04-01/1301652475262.gif
 
Last edited by a moderator:
Physics news on Phys.org
I do not understand what you are trying to do with all those L's. Just let x=x0,x1,.,xn to verify the equation.
 
how can i show that ?
 
let
g(x)=-f(x)+p(x)(xn-x)/(xn-x0)+q(x)(x-x0)/(xn-x0)
we want to prove that
g(x)=0 for x=x0,x1,.,xn
given
p(x)-f(x)=0 for x=x0,x1,.,xn-1
q(x)-f(x)=0 for x=x1,x2,.,xn

hint
use the fact that 1=(xn-x)/(xn-x0)+(x-x0)/(xn-x0)

to write g(x) as
g(x)=-f(x)(xn-x)/(xn-x0)-f(x)(x-x0)/(xn-x0)
+p(x)(xn-x)/(xn-x0)+q(x)(x-x0)/(xn-x0)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top