Petar Mali
- 283
- 0
Do yoh have some nice picture to show why the primitive vectors of basic cubic lattice are
\vec{a}_1=\frac{a}{2}(-\vec{e}_x+\vec{e}_y+\vec{e}_z)
\vec{a}_2=\frac{a}{2}(\vec{e}_x-\vec{e}_y+\vec{e}_z)
\vec{a}_3=\frac{a}{2}(\vec{e}_x+\vec{e}_y-\vec{e}_z)
Thanks!
\vec{a}_1=\frac{a}{2}(-\vec{e}_x+\vec{e}_y+\vec{e}_z)
\vec{a}_2=\frac{a}{2}(\vec{e}_x-\vec{e}_y+\vec{e}_z)
\vec{a}_3=\frac{a}{2}(\vec{e}_x+\vec{e}_y-\vec{e}_z)
Thanks!