How can you optimize turning over seven hexagonal mats in the fewest moves?

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Puzzle
Natasha1
Messages
494
Reaction score
9
Here my problem to solve: (Could anyone share some insight?)

You have seven hexagonal-shaped mats in a line. These mats all have to be turned over, but you can only turn over exactly three at a time.
You can choose the three from anywhere in the line.
A mat may be turned over on one move and turned back over again on another.

What is the smallest number of moves you can do this in?
Try with other numbers of mats.
Do you notice any patterns in your findings?
Can you explain why these patterns occur?


Here is my answer so far:

So the minimum number of turns for 7 cards, turning 3 at a time is 3 as follows:

+ 3 + ( 2 – 1) + 3 = 7

You always start and end with the number you are turning, so in the above you start with a +3 and end with a +3, so you just need to add another one (2-1) to make 7.

From here you can conclude that it is impossible to do if you have an odd number of cards and an even number of cards to turn e.g. if you are turning 6 cards at a time the only numbers you can make are even as follows:

+ 6

( 5 - 1) = 4

( 4 – 2) = 2

( 3 – 3) = 0 (pointless)

( 2 – 4) = 2

( 1 – 5) = 4

- 6
 
Physics news on Phys.org
I don't know why you did the stuff with turning 6 cards at a time. It asks you to investigate what happens when you have a different total number of mats to turn over, not when you have a different number of mats to turn over at a time. Figure out how many moves it takes to turn over 5, 6, 7, 8, 9, 10, 11, 12, or 13 mats, given that you must turn over 3 at a time. Once you figure out 5-10, then figuring out 11-13 should be a no-brainer, and you should have fully understood the pattern.
 
This statement...
Natasha1 said:
it is impossible to do if you have an odd number of cards and an even number of cards to turn
...nevertheless, is true.

Have you studied any modulo arithmetic yet ?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top