How Can You Use Partial Fractions to Find the Sum of an Infinite Series?

Sean1218
Messages
84
Reaction score
0

Homework Statement



Ʃ 4/(n(n+2)) from n=1 to n=infinity

Homework Equations





The Attempt at a Solution



I tried using partial fractions to get A/n + B/(n+2), and I solved for A and B to get A=2 and B=-2

I tried summing them up, so everything would cancel except the first & last term, but nothing cancels.

I'm not sure of any other methods for finding sums or if I'm not just using this one wrong.

Any help?
 
Physics news on Phys.org
Nothing cancels? Yes, partial fractions gives the addend as 2/n- 2/(n+2).
When n= 1, that is 2- 2/3.
When n= 2, that is 1- 2/4.
When n= 3, that is 2/3- 2/5.
When n= 4, that is 2/4- 2/6.
When n= 5, that is 2/5- 2/7.
When n= 6, that is 2/6- 2/8.
When n= 7, that is 2/7- 2/9
etc.

I see a lot cancelling!
 
You have the right idea. Try writing out the first 6 or so terms of$$
\sum_1^\infty(\frac 2 n - \frac 2 {n+2})$$leaving in the parentheses and not simplifying as you go. You will see some terms that cancel in the middle. Once you do that write the first ##n## terms.

[Edit]I see Halls types faster than I do.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top