How close must the wavelength of a photon be for an atom to absorb it?

jailbait
Messages
5
Reaction score
0
When a photon has a wavelength close to the energy needed for an electron jump in an atom, the atom will absorb the photon. How close must the wavelength be to the energy required for the atom to still absorb it?
 
Physics news on Phys.org
Other members correct me if am wrong but I believe most photon energies are absorbed the electron. Most times the photon has not enough energy to excite the electron to an upper energy level, so the electron does not move and absolves the light.
If the photon has equal or more energy than the energy difference of the electron cloud orbitals the electron is excited up where it imminently comes back down and remit the photon.
 
jailbait said:
When a photon has a wavelength close to the energy needed for an electron jump in an atom, the atom will absorb the photon. How close must the wavelength be to the energy required for the atom to still absorb it?

Exact, photons arise from complementary quantization phenomena
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top